Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 8, Number 12—December 2002

Antimicrobial Resistance of Escherichia coli O26, O103, O111, O128, and O145 from Animals and Humans

Carl M. Schroeder*, Jianghong Meng*, Shaohua Zhao†, Chitrita DebRoy‡, Jocelyn Torcolini‡, Cuiwei Zhao*, Patrick F. McDermott†, David D. Wagner†, Robert D. Walker†, and David G. White†
Author affiliations: *University of Maryland, College Park, Maryland, USA; †U.S. Food and Drug Administration, Laurel, Maryland, USA; ‡The Pennsylvania State University, University Park, Pennsylvania, USA

Main Article

Table 2

Class, dilution range, and resistant breakpoints of tested antimicrobialsa

Class or antimicrobial Dilution range tested (µg/mL) NCCLS resistance breakpoint (µg/mL)
   Cefoxitin 1–32 32
   Ceftiofur 1–16 8b
   Ceftriaxone 0.06–64 64
   Cephalothin 1–32 32
   Amoxicillin-clavulanic acid 0.25/0.12–32/16 32/16
   Ampicillin 0.25–32 32
Sulfonamides and potentiated sulfonamides    
   Sulfamethoxazole 32–512 512
   Trimethoprim-sulfamethoxazole 0.06/1.19–4/76 4/76
   Chloramphenicol 1–32 32
Quinolones and fluoroquinolones    
   Ciprofloxacin 0.004–8 4
   Nalidixic acid 2–256 32
   Gentamicin 0.25–16 16
   Streptomycin 1–256 64b
Tetracycline 1–16 16

aNCCLS, National Committee for Clinical Laboratory Standards. Antimicrobial susceptibility testing was performed according to NCCLS standards (20). Escherichia coli (ATCC 25922 and ATCC 35218), Enterococcus faecalis (ATCC 51299), and Pseudomonas aeurigonosa (ATCC 27853) were used as quality controls.
bNCCLS breakpoint not established for E. coli.

Main Article

  1. Cohen  ML. Changing patterns of infectious disease. Nature. 2000;406:7627. DOIPubMedGoogle Scholar
  2. Bonten  M, Stobberingh  E, Philips  J, Houben  A. High prevalence of antibiotic resistant Escherichia coli in faecal samples of students in the south-east of The Netherlands. J Antimicrob Chemother. 1990;26:58592. DOIPubMedGoogle Scholar
  3. Conway  P, Macfarlane  G. Microbial ecology of the human large intestine. In: Gibson G, editor. London: CRC Press; 1995. p. 1–24.
  4. Falagas  M, Gorbach  S. Practice guidelines: urinary tract infections. Infect Dis Clin Pract. 1995;4:24157. DOIGoogle Scholar
  5. Klein  JO, Feigin  RD, McCracken  GH Jr. Report of the task force on diagnosis and management of meningitis. [Pubmed]. Pediatrics. 1986;78:95982.PubMedGoogle Scholar
  6. Thielman  NM, Guerrant  RL. Escherichia coli. In: Yu VL, Merigan Jr TC, Barriere SL, editors. Baltimore: The Williams & Wilkins Company: 1999. p. 188–200.
  7. Griffin  PM. Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant RL, editors. New York: Raven Press, Ltd.: 1995. p. 739–61.
  8. Paton  JC, Paton  AW. Pathogenesis and diagnosis of Shiga toxin–producing Escherichia coli infections. Clin Microbiol Rev. 1998;11:45079.PubMedGoogle Scholar
  9. Galland  JC, Hyatt  DR, Crupper  SS, Acheson  DW. Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots. Appl Environ Microbiol. 2001;67:161927. DOIPubMedGoogle Scholar
  10. Meng  J, Zhao  S, Doyle  MP, Joseph  SW. Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans. J Food Prot. 1998;61:15114.PubMedGoogle Scholar
  11. Schroeder  CM, Zhao  C, DebRoy  C, Torcolini  J, Zhao  S, White  DG, Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol. 2002;68:57681. DOIPubMedGoogle Scholar
  12. Stephan  R, Schumacher  S. Resistance patterns of non-O157 Shiga toxin-producing Escherichia coli (STEC) strains isolated from animals, food and asymptomatic human carriers in Switzerland. Lett Appl Microbiol. 2001;32:1147. DOIPubMedGoogle Scholar
  13. Teshager  T, Herrero  IA, Porrero  MC, Garde  J, Moreno  MA, Dominguez  L. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses. Int J Antimicrob Agents. 2000;15:13742. DOIPubMedGoogle Scholar
  14. van Den Bogaard  AE, London  N, Driessen  C, Stobberingh  EE. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother. 2001;47:76371. DOIPubMedGoogle Scholar
  15. Bettelheim  KA, Bennett-Wood  V, Lightfoot  D, Wright  PJ, Marshall  JA. Simultaneous isolation of verotoxin-producing strains of Escherichia coli O128:H2 and viruses in gastroenteritis outbreaks. Comp Immunol Microbiol Infect Dis. 2001;24:13542. DOIPubMedGoogle Scholar
  16. Giammanco  A, Maggio  M, Giammanco  G, Morelli  R, Minelli  F, Scheutz  F, Characteristics of Escherichia coli strains belonging to enteropathogenic E. coli serogroups isolated in Italy from children with diarrhea. J Clin Microbiol. 1996;34:68994.PubMedGoogle Scholar
  17. Ludwig  K, Bitzan  M, Zimmermann  S, Kloth  M, Ruder  H, Muller-Wiefel  DE. Immune response to non-O157 Vero toxin-producing Escherichia coli in patients with hemolytic uremic syndrome. J Infect Dis. 1996;174:102839. DOIPubMedGoogle Scholar
  18. Russmann  H, Kothe  E, Schmidt  H, Franke  S, Harmsen  D, Caprioli  A, Genotyping of Shiga-like toxin genes in non-O157 Escherichia coli strains associated with haemolytic uraemic syndrome. J Med Microbiol. 1995;42:40410. DOIPubMedGoogle Scholar
  19. Scotland  SM, Willshaw  GA, Smith  HR, Said  B, Stokes  N, Rowe  B. Virulence properties of Escherichia coli strains belonging to serogroups O26, O55, O111 and O128 isolated in the United Kingdom in 1991 from patients with diarrhoea. Epidemiol Infect. 1993;111:42938. DOIPubMedGoogle Scholar
  20. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing - tenth informational supplement. M100-S11. Wayne (PA): The Committee; 2001.
  21. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. 2nd edition. M31-A2. Wayne (PA): The Committee; 2002.
  22. Wittwer  CT, Reed  GB, Ririe  KM. Rapid cycle DNA amplification. In: Mullis KB, Ferre F, Gibbs RA, editors. Boston: Birkhauser; 1994.
  23. Witham  PK, Yamashiro  CT, Livak  KJ, Batt  CA. A PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef. Appl Environ Microbiol. 1996;62:134753.PubMedGoogle Scholar
  24. Paton  AW, Paton  JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598602.PubMedGoogle Scholar
  25. Gannon  VP, Rashed  M, King  RK, Thomas  EJ. Detection and characterization of the eae gene of Shiga-like toxin-producing Escherichia coli using polymerase chain reaction. J Clin Microbiol. 1993;31:126874.PubMedGoogle Scholar
  26. Fagan  PK, Hornitzky  MA, Bettelheim  KA, Djordjevic  SP. Detection of shiga-like toxin (stx1 and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Appl Environ Microbiol. 1999;65:86872.PubMedGoogle Scholar
  27. Threlfall  EJ, Ward  LR, Frost  JA, Willshaw  GA. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol. 2000;62:15. DOIPubMedGoogle Scholar
  28. Zhao  S, White  DG, Ge  B, Ayers  S, Friedman  S, English  L, Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin–producing Escherichia coli isolates. Appl Environ Microbiol. 2001;67:155864. DOIPubMedGoogle Scholar
  29. Hornish  RE, Kotarski  SF. Cephalosporins in veterinary medicine ceftiofur use in food animals. Curr Top Med Chem. 2002;2:71731. DOIPubMedGoogle Scholar
  30. Winokur  PL, Vonstein  DL, Hoffman  LJ, Uhlenhopp  EK, Doern  GV. Evidence for transfer of CMY-2 AmpC beta-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother. 2001;45:271622. DOIPubMedGoogle Scholar
  31. Fey  PD, Safranek  TJ, Rupp  ME, Dunne  EF, Ribot  E, Iwen  PC, Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N Engl J Med. 2000;342:12429. DOIPubMedGoogle Scholar
  32. Hofacre  CL, de Cotret  AR, Maurer  JJ, Garritty  A, Thayer  SG. Presence of fluoroquinolone-resistant coliforms in poultry litter. Avian Dis. 2000;44:9637. DOIPubMedGoogle Scholar
  33. Giraud  E, Leroy-Setrin  S, Flaujac  G, Cloeckaert  A, Dho-Moulin  M, Chaslus-Dancla  E. Characterization of high-level fluoroquinolone resistance in Escherichia coli O78:K80 isolated from turkeys. J Antimicrob Chemother. 2001;47:3413. DOIPubMedGoogle Scholar
  34. Zhao  T, Doyle  MP, Shere  J, Garber  L. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Appl Environ Microbiol. 1995;61:12903.PubMedGoogle Scholar
  35. Jones  ME, Peters  E, Weersink  AM, Fluit  A, Verhoef  J. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria. Lancet. 1997;349:17423. DOIPubMedGoogle Scholar

Main Article

Page created: April 20, 2012
Page updated: April 20, 2012
Page reviewed: April 20, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.