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SYNOPSIS

Streptococcus suis is an opportunistic bacterial por-
cine pathogen that can cause severe disease in 

humans, most commonly meningitis and sepsis (1). 
Human S. suis infections occur both through direct 
contact with infected pigs and consumption of un-
dercooked contaminated pork (2). Human S. suis in-
fections have become endemic in Thailand and Viet-
nam, driven by consumption of traditional raw pork 
dishes (1), and S. suis has caused multiple outbreaks 
in humans with high levels of illness and death in 
China and Thailand (3). In Europe, S. suis infections 
are considered an occupational hazard, mainly occur-
ring among persons with skin lesions working closely 
with pigs or pork products (1). Human infections in 
Europe account for ≈10% of the global prevalence, but 
incidence in Europe is likely underestimated because 
S. suis infections are not a notifiable disease (4). Togo, 
Madagascar, Chile, and Indonesia have recently re-
ported zoonotic S. suis infections, meaning all conti-
nents except Antarctica have now reported human 
infections (1,5–8). 

S. suis is classified into 29 distinct serotypes based 
on its capsular polysaccharide, as well as 27 novel se-
rotypes based on novel capsular polysaccharide loci. 
Serotypes 2, 4, 7, and 9 are the most common causes of 
porcine disease in Europe (3); serotype 2 isolates cause 
≈95% of human infections and serotype 14 causes 
≈4% (4). In addition, sporadic infections caused by se-
rotypes 4, 5, 7, 9, 16, 21, 24, and 31 have been reported 
(3,9–11). S. suis genotypes are classified on the basis 
of sequence types (STs) determined through multilo-
cus sequence typing (MLST), which are grouped into 
clonal complexes (CCs) (12). CC1 with a serotype 2 
capsule is the main lineage causing human infections 
and has expanded worldwide (3). Emerging zoonotic 

lineages, such as CC20, which emerged from CC16 in 
the Netherlands after acquiring a serotype 2 capsule, 
also been described (13). 

We aimed to increase insight into the epidemiolo-
gy of human S. suis infections in Europe and to assess 
the bacterial population structure and diversity of 
zoonotic S. suis clades (1). We assessed the frequency 
of human S. suis infections in Europe through a sur-
vey of reference laboratories in top pig-rearing coun-
tries in Europe, performed a systematic literature re-
view and explored the gray literature (social media, 
news accounts, and government reports). In addition, 
we reconstructed a representative phylogeny of zoo-
notic S. suis isolates in Europe. 

This study was not reviewed by an ethics review 
board, because it was based on anonymized surveil-
lance data. In accordance with Dutch law, approval 
from a medical ethics committee was not deemed 
necessary because case-patients were not subject to 
any actions or rules of conduct. We did not obtain in-
formed consent because our data collection processes 
were exempted under exceptions formulated in the 
Dutch Implementation of the European General Data 
Protection Regulation Act (2016/679). 

Methods 

Survey 
We contacted national reference laboratories in 10 
countries in Europe (Czech Republic, Denmark, 
France, Germany, Hungary, Italy, the Netherlands, 
Poland, Spain, and the United Kingdom) that in-
cluded S. suis infections within their scope. We asked 
those laboratories to retrospectively collect data on 
cases of human S. suis infection during 1990–2018 be-
cause most human S. suis infections have been report-
ed since 1990. We asked participating laboratories to 
complete a questionnaire collecting patient metadata 
and bacterial typing and metadata. Anonymized pa-
tient metadata were age, sex, clinical signs, and oc-
cupation. Bacterial typing encompassed serotype, 
sequence type (ST), and available whole-genome 
sequences. Bacterial metadata were date of isolation, 
source of isolation, and method of identification. In 
addition, we requested in the questionnaire that ref-
erence laboratories share their isolates for further ge-
nomic analysis (Appendix, https://wwwnc.cdc.gov/
EID/article/30/3/23-0348-App1.pdf). 

Systematic Review 
We performed a systematic review according to 
PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) guidelines (14) to  
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Streptococcus suis, a zoonotic bacterial pathogen circu-
lated through swine, can cause severe infections in hu-
mans. Because human S. suis infections are not notifi-
able in most countries, incidence is underestimated. We 
aimed to increase insight into the molecular epidemiology 
of human S. suis infections in Europe. To procure data, 
we surveyed 7 reference laboratories and performed a 
systematic review of the scientific literature. We identified 
236 cases of human S. suis infection from those sources 
and an additional 87 by scanning gray literature. We per-
formed whole-genome sequencing to type 46 zoonotic S. 
suis isolates and combined them with 28 publicly avail-
able genomes in a core-genome phylogeny. Clonal com-
plex (CC) 1 isolates accounted for 87% of typed human 
infections; CC20, CC25, CC87, and CC94 also caused 
infections. Emergence of diverse zoonotic clades and no-
table severity of illness in humans support classifying S. 
suis infection as a notifiable condition. 
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identify cases of human S. suis infections in Europe in  
articles published from 1990 (survey start date) 
through 2022. We screened PubMed, Web of Science, 
and Scopus for key terms—S. suis, human, and ≥1 
country in Europe (as defined by the World Health 
Organization)—in the titles or abstracts of articles 
published before April 1, 2022 (Appendix). We re-
moved duplicate references by using Zotero version 
6.0.8 (https://www.zotero.org) and manual check-
ing. We included studies containing data on human 
S. suis isolates or case reports describing human S. 
suis infections in Europe; we extracted patient and 
bacterial metadata for further analysis. We excluded 
studies that did not include data on zoonotic S. suis 
isolates or human infections, reported isolates not 
collected in Europe, did not publish original data, 
were published before 1990, or lacked information 
on the origin of isolates (Figure 1). To avoid dupli-
cation, we excluded from the systematic review iso-

lates reported in both the survey and an article; in 
addition, if an isolate appeared in multiple articles, 
we included data only from the original article.

Gray Literature Search 
Because S. suis is not a notifiable disease, there are 
no guidelines for reporting such infections. To iden-
tify additional cases, we performed a broad scan 
of gray literature to capture cases of human S. suis 
infections in Europe not identified in the scientific 
literature or the survey. However, we distinguished 
cases we identified in the survey, literature review, 
and official reports from unreported cases (all other 
cases). We searched X (previously Twitter) and the 
Google news section using the terms S. suis, infec-
tion, and human in Dutch, English, French, German, 
Italian, Portuguese, and Spanish. To complement 
those data, we scanned ministry of health web-
sites from France, Germany, Italy, the Netherlands,  
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Figure 1. Preferred Reporting 
Items for Systematic Reviews 
and Meta-Analyses (PRISMA) 
search flowchart for systematic 
review of Streptococcus suis in 
Europe during 1990–2022.
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Portugal, Spain, and the United Kingdom for reports 
on zoonotic bacterial infections related to human S. 
suis infections. To avoid duplication, we compared 
metadata, when available, with isolate data from the 
survey and systematic review. 

In Silico Typing and Phylogenetic Analysis 
We included 74 genomes for whole-genome se-
quencing (WGS) analysis, 67 from the survey (46 
sequenced during this investigation and 21 previ-
ously sequenced) and 7 from the systematic review 
(Appendix Figure 1). We used MLST version 2.19.0 
(https://github.com/tseemann/mlst) with the 
PubMLST database (https://pubmlst.org) to type 
the MLST profiles of the draft genomes. We sub-
mitted profiles for novel STs to PubMLST. We per-
formed in silico serotyping by feeding processed Il-
lumina reads into the S. suis serotyping pipeline (15). 
We reconstructed a core genome single-nucleotide  
polymorphism (SNP) phylogeny using Panaroo ver-
sion 1.3.0 (16) to reconstruct the pangenome and 
align the core genome. We calculated the number 
of constant sites in the core genome alignment with 
SNP-sites version 2.5.1 (17) using the flag “-C.” We 
reconstructed the maximum-likelihood (ML) phy-
logeny by running IQ-TREE version 2.0.3 (18) with 
1,000 bootstraps and used the general time-reversible 
plus gamma model with the flag “-fconst” to include 
the constant sites from SNP-sites. We investigated 
the presence of 46 accessory genes previously found 
to be overrepresented in zoonotic isolates (human-
pig prevalence ratio >2) using ABRicate (https://
github.com/tseemann/abricate) with a custom da-
tabase and a minimum protein identity and coverage 
of 80%. We visualized the resulting gene presence/
absence matrix in Phandango (19,20). Raw Illumina 
sequences can be found in the National Center for 
Biotechnology Information Short Read Archive (Bio-
Project PRJNA853715). Genome assemblies have 
been deposited in GenBank and are available under 
the same BioProject number (Appendix Table 7). 

Results

Geographic Distribution of Reported Human  
S. suis Infections across Europe, 1990–2022 
Of 10 reference laboratories invited to participate in 
the survey, 7 laboratories (Spain, Germany, Nether-
lands, Denmark, Czech Republic, Poland, and Unit-
ed Kingdom) responded and reported 107 unique 
cases of human S. suis infections (Appendix Table 2). 
In the systematic review, of 119 screened titles and 
abstracts, we selected 53 articles mentioning human 

S. suis infections in Europe for full-text reading. In  
addition, we included 29 studies identified by screen-
ing reference lists (Figure 1). In total, we extracted 
data from 129 cases of human S. suis infections report-
ed in 69 research articles (Figure 1; Appendix Table 
3). Combining both sources, we identified 236 unique 
cases of human S. suis infections across Europe dur-
ing 1990–2022. Germany, Spain, and the Netherlands, 
the top pig-rearing countries in Europe (21), reported 
114/236 (48%) of the cases (Figure 2). Furthermore, 
203/236 (86%) of the reported cases originated from 
just 8 countries (Germany, Spain, the Netherlands, 
Denmark, Hungary, France, Poland, and the Czech 
Republic), 6 of which participated in the survey study; 
sporadic cases reported from 8 additional countries in 
Europe completed the dataset. 

Epidemiology of Human S. suis Infections in Europe 
Most patients were middle-aged men (Table 1). Of pa-
tients with a reported clinical syndrome, meningitis 
was the main clinical syndrome observed in both the 
survey (59/71 [83%]) and systematic review (59/86 
[68%]), followed by sepsis, which affected 15/71 
(21%) in the survey and 21/86 (24%) in the system-
atic review. Additional clinical signs and symptoms 
included hearing loss (n = 22), endocarditis (n = 6), 
and spondylodiscitis (n = 3); 11 patients died. Patient 
occupation was described as a potential risk factor in 
19 cases in the survey and 72 cases in the systematic 
review (Table 1). Most infections, 78/92 (85%) in the 
survey and 43/48 (90%) in the systematic review, 
were caused by serotype 2 isolates, followed by sero-
type 14 isolates (Table 2). Most isolates (76/87 [78%] 
in the survey and 14/16 [88%] in the systematic re-
view) belonged to zoonotic lineage CC1. In addition, 
11/87 (13%) infections in the survey and 1 in the sys-
tematic review were caused by CC20 lineage isolates. 

Year of isolation was collected for only 44/129 
(34%) isolates from cases in the systematic review 
(Appendix Table 3). Nonetheless, average number of 
cases per year in the systematic review and survey 
increased after 1999, from 2.7 during 1990–1999 to 
5.7 during 2000–2009 and 5.0 during 2010–2019 (Ap-
pendix Figure 2). Moreover, we calculated crude es-
timates of S. suis incidence in the at-risk population 
in 6 (Czech Republic, Germany, Hungary, the Neth-
erlands, Poland, and Spain) countries with >5 cases 
reported in the survey or literature review during 
2005–2013. We defined the population at risk as the 
proportion of the agricultural census involved in pig 
specialized holdings with a 10% upper margin to ac-
count for butchers, hunters, slaughterhouse workers, 
lorry drivers, and meat factory workers. Incidence 
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range in the at-risk population for those 6 countries 
during 2005–2013 averaged 0.161–4.945 cases/100,000 
persons; Poland had the lowest incidence and the 
Netherlands the highest (Appendix Table 6). 

Scan of Gray Literature
Because no centralized surveillance system exists for 
human S. suis infection and the disease is not notifi-
able in any country in Europe, the number of infec-
tions in Europe has likely been underestimated. We 
scanned gray literature in search of cases not identi-
fied through either the survey or systematic review. 
Public Health England (now the UK Health Security 
Agency) included human S. suis infections in their 
annual zoonosis official reports collected from the 
Veterinary Diagnostic Analysis database of the Ani-
mal and Plant Health Agency (22). During 1991–2017, 
those reports recorded 61 human S. suis infections in 
the United Kingdom, 10 times the number of cases 
identified from the survey and systematic review 

combined (6 cases). However, those 61 cases might 
overlap with cases from the survey and systematic 
review because neither metadata nor identification 
method were provided (Appendix Table 4). The 
Netherlands Reference Laboratory for Bacterial Men-
ingitis surveyed 57 medical microbiology laboratories 
in the Netherlands during 2013 with the aim of iden-
tifying cases not reported to the reference laboratory 
and collected an additional 25 unique cases isolated 
during 1990–2011 (Appendix Table 5) (23). We also 
found 1 case of S. suis meningitis in a butcher in Spain 
that was reported through X (24). 

Population Structure of Zoonotic S. suis in Europe 
To study the population structure of zoonotic S. suis 
isolates in Europe, we reconstructed a core-genome 
SNP phylogeny of 74 strains from 10 different coun-
tries (Figure 3). We identified 5 novel STs, 1660, 1602, 
1663, 1707, and 1708. Most strains were part of the 
major zoonotic clade CC1, which has spread across 
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Figure 2. Reported cases of human Streptococcus suis infections across Europe during 1990–2022. We pooled reported cases 
collected in the survey study and systematic search study. The color of the countries represents the relative number of cases: the darker 
the tone, the higher the number of reported cases. Purple stars indicate reference laboratory participating in the survey study within that 
country. Scale bar indicated substitutions per site. Countries in black were not included in the study.
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Europe; >1 strain from each country included in the 
phylogeny was CC1. Most of the CC1 strains had a 
serotype 2 capsule, and a small subset possessed 
the structurally similar serotype 14 capsule (25). We 
distinguished 2 subclades within CC1 in a genome-
wide SNP phylogeny (Appendix Figure 3). The other 
zoonotic clades appeared to be more geographically 
restricted. For example, most of the CC20 strains 
were isolated in the Netherlands, where the lineage 
is thought to have emerged (13). Two additional 
CC20 strains were isolated in Germany, forming a se-
rotype 5 outgroup to clonal CC20 serotype 2 strains 
from the Netherlands. All CC25 strains were recov-
ered in the Czech Republic. The 3 ST25 serotype 2 

strains had only 73–116 SNPs across their core ge-
nomes, whereas the ST29 strain differed from the 
ST25 strains by 4,353–4,416 SNPs and had a serotype 
7 capsule. Strains from the CC87 clade were identified 
in Germany and the Czech Republic and possessed a 
serotype 2 capsule. The 3 strains from Germany were 
ST19 and highly similar (81–118 SNPs), whereas the 
strain from the Czech Republic had novel ST1660 and 
differed from the ST19 clade by 9,411–9,434 SNPs. 

CC1 and CC20 Isolates and Genes  
Associated with Zoonotic Potential
Overall, strains from clades CC1 and CC20 had a 
higher number of accessory genes overrepresented in 
zoonotic isolates than did strains from lineages CC25, 
CC87, and CC94 (Figure 4). Most genes associated 
with zoonoses were present in >1 of the lineages; only 
the 2-component signal transduction system nisK/R 
and the fimbria-like adhesin sssP1 genes were absent 
from the dataset (Figure 4). Of note, despite its role 
in adhesion and virulence being extensively studied, 
muramidase-related protein (mrp) was absent from 
the CC20 clade (26). Factor H binding protein (fhb), 
associated with binding factor H and increased trans-
location across the blood/brain barrier (27), was pres-
ent only in CC1 strains. Differences could be observed 
within CC1 sublineages; 1 subclade had an additional 
factor H binding protein (fhbp). Last, suilysin (sly), a 
pore-forming hemolysin with a clear role in patho-
genesis (20), was present in all clades except CC25, 
which instead carried the hyaluronate lysin A (hylA), 
associated with reduced virulence (Figure 4) (28). 

Discussion 
Despite having caused multiple outbreaks with 
high levels of illness and death in the past decade 
and reports of new zoonotic lineages arising on dif-
ferent continents, S. suis remains largely excluded 
from disease surveillance programs (29). Although 
neither carriage in healthy humans nor human-to-
human transmission of S. suis have been reported 
to date, systematic surveillance is needed to follow 
the evolutionary trends of this pathogen in humans 
and pigs, the main reservoir from which zoonotic 
lineages emerge (2). 

Our study included some potential sources of 
bias. Differences in number of cases between coun-
tries should not be attributed only to the size of pig 
populations. Other factors, such as government poli-
cy and disease monitoring and reporting, could con-
tribute to observed differences in reported human S. 
suis cases between countries. For instance, although 
France has one of the largest pig populations in  
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Table 1. Patient data collected in survey and systematic review 
for study of molecular epidemiology of underreported emerging 
zoonotic pathogen Streptococcus suis, Europe* 

Patient data Survey, n = 107 
Systematic 

review, n = 129 
Demographic information 
 Sex   
  M 73 93 
  F 16 24 
  NA 18 12 
 Age   
  Median (range), y 52 (0–79) 48 (22–85) 
  NA 26 54 
Clinical symptoms 
 Meningitis 59 59 
 Sepsis 15 21 
 Hearing loss 0 22 
 Endocarditis 2 6 
 Spondylodiscitis 0 3 
 Death 0 11 
 NA 36 43 
Occupational risk†   
 Described 19 72 
 No risk 0 2 
 NA 88 55 
*Values are no. patients except as indicated. NA, not available. 
†Occupational risk: Any job involving close contact with pigs or pork 
products, including: farmer, butcher, abattoir worker, meat factory worker, 
hunter, livestock truck driver, or cook. 

 

 
Table 2. Bacterial isolate data collected in survey and systematic 
review for study of molecular epidemiology of underreported 
emerging zoonotic pathogen Streptococcus suis, Europe* 

Isolate data Survey, n = 107 
Systematic 

review, n = 129 
Serotype no.    
 2 78 43 
 5 2 1 
 7 1 0 
 14 11 4 
 NA 15 81 
Clonal complex no.   
 1 68 14 
 20 11 1 
 25 4 0 
 87 3 1 
 94 1 0 
 NA 20 113 
*NA, not available. 
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Europe, only 7 human cases have been reported. In 
contrast, although they have smaller pig populations, 
the Czech Republic reported 18 and Poland 22 cases 
(Figure 2) (30). The distribution of clinical symptoms 
aligns with previous regional and global estimates 
(1). However, clinical data gathered in the survey 
were potentially biased toward reporting meningi-
tis because several of the surveyed laboratories are 
reference laboratories for bacterial meningitis (Table 
1) (1). The systematic review yielded diverse article 
types (e.g., case reports, surveillance studies) and in-
consistent quality of reported metadata. Often, year 
of isolation and bacterial typing was absent, making 
it difficult to establish meaningful time trends in the 
emergence of zoonotic S. suis in Europe. Finally, the 
time frames of the survey, 1990–2018, and system-
atic review, 1990–2022, were not identical. 

The serotype 2 capsule is linked with zoonotic 
S. suis infections, and most worldwide S. suis cases 
are caused by serotype 2 (4). While investigating the 
emergence of the zoonotic clade CC20, 1 study (13) 
proposed that capsule-switching events leading to 
acquisition of a serotype 2 capsule may be necessary 
for pathogenic porcine strains to become zoonotic. 
We observed hints of capsule-switching events, with 
the CC20 strains from Germany carrying serotype 5 
capsule instead of serotype 2, potentially represent-
ing an intermediate step in the emergence of zoo-
notic CC20 from CC16 (13). Furthermore, zoonotic 
strains from CC87 and CC94 lineages were serotype 
2, whereas most porcine CC87 strains described in the 
literature carried a serotype 8 capsule; porcine CC94 
strains displayed a wide range of capsules, serotypes 
3, 7, and 23 being the most common (31). However, 
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Figure 3. Genome population structure of zoonotic Streptococcus suis in Europe. The maximum-likelihood tree was reconstructed 
using IQ-TREE (18) with a core genome alignment produced with Panaroo (16). Color triangles at branch tips indicate country of 
collection; color rings indicate lineage (CC). The inner color ring indicates ST and is labeled accordingly. The outer color ring indicates 
the serotype as determined by the antigenic properties of the cps. We used iTOL (https://itol.embl.de) to visualize the tree. cps, capsular 
polysaccharide; NA, not available; ST, sequence type.
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the low number of samples collected for CC25, CC87, 
and CC94 in our study and the fact that they were 
collected more than a decade ago make it difficult 
to conclude whether or not these CCs are emerging 
as zoonotic lineages or are geographically restricted 
(Appendix Tables 2, 3). 

The presence of genes associated with zoonotic 
potential varied across lineages. Differences in the 
accessory genome of the zoonotic S. suis popula-
tion, with some well-studied virulence factors such 
as sly, mrp, and fhb missing from certain pathogenic 
clades, suggest that, although individual genes might 
contribute to virulence and zoonotic potential, those 
genes are not individually essential for S. suis to in-
fect humans (20,26,27) (Figure 4). Moreover, simply 
because a gene is overrepresented in zoonotic isolates 
does not mean it plays an active role in zoonotic po-
tential, and its role in zoonosis should be explored ex-
perimentally. For example, some genes, such as zmp 
and sp1, more common in human than porcine S. suis 
isolates, have been shown not to be critical for viru-
lence (32,33), and others, such as igdE and ideS, only 
play a role in evading porcine, not human, immune 
response (34,35). 

Estimated cumulative prevalence of human S. suis 
infection is substantially higher in southeastern Asia 
than Europe and the epidemiology of human S. suis  

infections differs significantly between continents (1). 
In Europe, skin injuries and abrasions are thought to be 
the main point of entry for S. suis (3), whereas in coun-
tries in southeastern Asia with a tradition of raw pork 
product consumption, the intestinal tract is a notable 
entry point for infection (2,36). Differences in exposure 
routes have led to differences in epidemiology; mul-
tiple foodborne human S. suis outbreaks with high lev-
els of illness and death have occurred in southeastern 
Asia in the past 2 decades (36,37). In Thailand, educa-
tional campaigns targeted toward at-risk populations 
have been shown to reduce incidence of human infec-
tions (36). Educational campaigns in Europe should be 
tailored to the different at-risk populations there. Our 
crude estimates of incidence of S. suis human infections 
in the population at risk for the Czech Republic, Ger-
many, Hungary, the Netherlands, Poland, and Spain 
are comparable to the incidence of other pathogens 
causing similar infections in the general population 
(Appendix). Our estimated incidence in the popula-
tion at risk for S. suis, range 0.161–4.945 cases/100,000 
persons across the different countries, was generally 
higher (except in Poland) than population-wide inci-
dence for Neisseria meningitidis (0.42–1.09) and lower 
than that of S. pneumoniae (1.52–14.86) reported by the 
European Centre for Disease Prevention and Control 
(38) (Appendix Table 6). 
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Figure 4. Presence/absence matrix of 46 genes putatively associated with zoonotic potential in study of zoonotic Streptococcus suis 
in Europe. The same phylogenetic tree presented in Figure 3 was used. Blue squares indicate presence of the gene while red squares 
indicate absence. The colored branches indicate CCs and follow the same pattern as in Figure 3 (blue, CC1; red, CC20; purple, 
CC87; yellow, CC94; green, CC25). We defined gene presence with 80% protein identity and coverage. We used Phandango (19) to 
visualize the tree. Bios, biosynthesis; CC, clonal complex; CS, complement system evasion.
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Furthermore, we found evidence of underreport-
ing in the Netherlands; 25 cases were not reported to 
the Netherlands Reference Laboratory for Bacterial 
Meningitis or described in published articles (23). The 
United Kingdom was the only country where human 
S. suis infections were included in official government 
reports. Those UK reports contained 10 times as many 
cases within the same timeframe than UK cases from 
the survey and systematic review combined (22) be-
cause the survey and systematic review did not capture 
many unpublished cases. This finding suggest that the 
number of cases collected in other countries through 
the survey might also be underestimated. We observed 
an increase in reported cases after 1999 (Appendix Fig-
ure 2); however, this increase could have been caused 
by heightened awareness after a severe outbreak in 
China in 2005 and by more precise bacterial identifica-
tion techniques (37). Moreover, in Thailand, a country 
where S. suis is a notifiable disease, reported infections 
have increased in the past few years (10). 

In conclusion, despite not being a notifiable dis-
ease in Europe, novel zoonotic S. suis lineages, includ-
ing multidrug-resistant lineages, have been detected 
recently both in Europe and worldwide (13,29). More-
over, our likely underestimated incidence estimates 
suggest that risk for S. suis infection for the at-risk 
population is greater than that of N. meningitidis 
and comparable to that of S. pneumoniae in the gen-
eral population. Given the severity of the disease it 
causes, we propose making S. suis infections notifi-
able in Europe to improve surveillance of emerging 
zoonotic lineages and evolutionary trends and better 
detect potential human-to-human transmission. 
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Enterovirus D68 (EV-D68) causes epidemics of 
asthma-like respiratory disease and clusters of 

cases of the paralytic polio-like disease known as 
acute flaccid myelitis (AFM) (1). During summer/fall 
seasonal peaks, EV-D68 substantially strains health-
care resources with unexpected surges in emergen-
cy department (ED) visits, hospitalizations, and the 
need for intensive care unit (ICU)–level respiratory 
support for children (2,3). Detecting EV-D68–associ-
ated AFM cases relies on timely, targeted outreach 
to ensure prompt diagnosis, appropriate specimen 
collection and testing, and reporting to public health 
authorities (4). However, because of the inability of 

clinically available diagnostics to differentiate rhino-
viruses from enteroviruses and the lack of widespread 
availability of EV-D68–specific testing, recognition of 
waves of EV-D68 infections is often delayed and the 
associated burden of disease remains substantially 
underdetected (5,6). Surveillance for EV-D68 is essen-
tial for early warning systems to guide responses to 
future waves of respiratory disease and AFM.

Although discovered in 1962 (7), EV-D68 was 
rarely detected before clusters of respiratory disease 
were reported in Europe, Asia, and the United States 
during 2008–2010 (8). In 2014, the largest and most 
widespread EV-D68 outbreak to date was reported in 
North America and Europe (3,9). During 2014–2018, 
a biennial pattern of circulation in the summer/fall 
was observed in the United States and Europe; the 
numbers of reported AFM cases increased with suc-
cessive outbreaks (10–12). That biennial circulation 
pattern was disrupted during the COVID-19 pan-
demic; no substantial circulation was detected in the 
United States in 2020–2021, most likely because of the 
nonpharmaceutical interventions that were directed 
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Surveillance for emerging pathogens is critical for devel-
oping early warning systems to guide preparedness ef-
forts for future outbreaks of associated disease. To better 
define the epidemiology and burden of associated respira-
tory disease and acute flaccid myelitis (AFM), as well as 
to provide actionable data for public health interventions, 
we developed a multimodal surveillance program in Colo-
rado, USA, for enterovirus D68 (EV-D68). Timely local, 
state, and national public health outreach was possible 
because prospective syndromic surveillance for AFM and 

asthma-like respiratory illness, prospective clinical labora-
tory surveillance for EV-D68 among children hospitalized 
with respiratory illness, and retrospective wastewater sur-
veillance led to early detection of the 2022 outbreak of 
EV-D68 among Colorado children. The lessons learned 
from developing the individual layers of this multimodal 
surveillance program and how they complemented and 
informed the other layers of surveillance for EV-D68 and 
AFM could be applied to other emerging pathogens and 
their associated diseases.
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at curbing the spread of SARS CoV-2 (13). Model-
ing the growth of the population susceptible to EV-
D68 during that period of limited activity suggested 
the potential for a larger outbreak when circulation  
returned (14).

After outbreaks in 2014 (15), 2016 (16), and 2018 
(17), we established a multimodal surveillance pro-
gram in Colorado for EV-D68 and AFM to better 
define their epidemiology and disease burden and 
to guide preparedness efforts (Figure 1). Our pro-
gram included prospective syndromic surveillance 
for AFM and asthma-like respiratory disease, pro-
spective EV-D68 clinical laboratory surveillance, and 
retrospective wastewater surveillance. The lessons 
learned from development and implementation of 
this multimodal surveillance system during the EV-
D68 outbreak in 2022 (18) carry valuable implications 
for preparedness efforts for EV-D68 and other emerg-
ing pathogens.

Methods

AFM Syndromic Surveillance
AFM is a reportable condition statewide in Colorado 
as part of Centers for Disease Control and Preven-
tion (CDC) nationwide AFM surveillance efforts (4). 

Healthcare providers are required to report suspected 
AFM cases to the Colorado State Department of Pub-
lic Health and Environment (CDPHE) within 4 calen-
dar days. Because there are no laboratory criteria for 
reporting AFM cases, syndromic criteria for reporting 
to public health authorities include any patient with 
new onset of focal limb weakness and magnetic reso-
nance images (MRI) showing a spinal cord lesion with 
at least some gray matter involvement spanning >1 
vertebral segments (19). CDPHE follows the Council 
of State and Territorial Epidemiologists guidance for 
AFM case ascertainment. Medical records and MRIs 
collected by CDPHE are ultimately classified by the 
CDC AFM neurology panel as confirmed, probable, 
or suspected in accordance with Council of State and 
Territorial Epidemiologists criteria.

EV-D68 Respiratory Syndromic Surveillance
Beginning in 2018, we conducted ongoing near–real-
time syndromic surveillance of asthma-like respirato-
ry illness at Children’s Hospital Colorado (CHCO), a 
444-bed quaternary care pediatric hospital in Aurora, 
Colorado; the hospital catchment area encompassed 
children in the Denver metropolitan area. Whereas 
upper and lower respiratory tract infection rates 
fluctuate with the circulation of many respiratory  
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Figure 1. Multimodal surveillance model for enterovirus D68 in Colorado, USA. AFM, acute flaccid myelitis; EV, enterovirus; RV, rhinovirus.
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viruses, a surge in cases of asthma-like illness was 
specifically noted to coincide with the large EV-D68 
outbreak in Colorado in 2014 (2); thus, medically at-
tended asthma-like illness rates were subsequently 
tracked for syndromic surveillance of EV-D68 respi-
ratory illness. A de-identified dataset of weekly ED 
visits with a principal billing diagnosis code of asth-
ma (code J45.XXX from the International Classifica-
tion of Diseases, 10th Revision, Clinical Modification) 
from CHCO was collected, and total weekly ED vis-
its served as a denominator. We chose the diagnosis 
codes to reflect visits associated with an asthma ex-
acerbation or asthma-like episode of wheezing that 
could be associated with EV-D68. To develop and 
determine the baseline for the forecast model, we 
obtained an identical retrospective dataset for the 3 
years before the target surveillance year. From those 
retrospective data, we generated expected counts of 
weekly ED visits, indirectly standardized by age and 
sex. We then calculated a standardized morbidity rate 
for each week by dividing the observed asthma ED 
visits by the expected count. Our EV-D68 syndromic 
surveillance system consists of 2 components: a time 
series forecast model to predict the expected number 
of asthma ED visits each week and a cumulative sum 
chart procedure to serve as an alarm to identify po-
tential temporal clusters of elevated weekly asthma 
ED visits (Appendix, https://wwwnc.cdc.gov/EID/
article/30/3/23-1223-App1.pdf).

Clinical Laboratory Surveillance
Clinical laboratory surveillance for EV-D68 respira-
tory illness was conducted during June–November 
2022 among children at CHCO for whom residual 
respiratory specimens were positive for the entero-
virus/rhinovirus target on the BioFire Respiratory 
Pathogen Panel 2.1 (BioFire Diagnostics, https://
www.biofiredx.com). We selected specimens from 
hospitalized patients with enterovirus/rhinovirus 
respiratory disease and tested them by using an EV-
D68–specific reverse transcription PCR (Appendix). 
We initially used a primer-probe set designed to tar-
get the 2014 B1 strain, in use at CHCO since 2015, for 
clinical surveillance testing during June–August of 
2022. In August 2022, the PCR protocol was updated 
with primer and probe sequences designed to detect 
the predominantly circulating strain (subclade B3), as 
well as previously circulating strains, and used for all 
clinical laboratory surveillance testing (20).

Wastewater Surveillance
We used the digital droplet PCR at the CDPHE lab-
oratory to quantify EV-D68 virus concentration in 

wastewater samples collected twice weekly during 
June–December 2022. We used the updated PCR 
primer-probe set targeting EV-D68 subclade B3 noted 
above (Appendix). We included 3 sewersheds in the 
Denver metropolitan area in this analysis, referred to 
as utilities A, B, and C, which overlap with Adams, 
Arapahoe, Denver, and Jefferson Counties.

To examine the geospatial overlap in EV-D68 clin-
ical laboratory case detections and detection of EV-
D68 in wastewater, we linked residential postal (ZIP) 
codes of clinical cases to ZIP Code Tabulated Areas 
(ZCTAs) and conducted a descriptive analysis of the 
time and spatial relationship between positive clinical 
and wastewater detection of EV-D68. Our tabulation 
of positive EV-D68 clinical tests for the 3 select Den-
ver metro area sewersheds where wastewater sam-
ples were collected (utilities A, B, and C) was based 
on the spatial overlap of the sewershed boundary 
and ZCTA boundary. To estimate allocation of cases 
to sewershed areas without exact address geolocation 
data, we split case counts among the sewershed ar-
eas (e.g., for a case from a ZCTA that overlapped 2 
sewershed areas, we assigned a case value of 0.5 to 
each area). We used descriptive statistics to compare 
trends among the different layers of the surveillance 
system (Appendix).

Results
On August 14, 2022, the Colorado syndromic surveil-
lance system for EV-D68 respiratory illness generated 
an alarm signal because the cumulative sum output 
exceeded the threshold for statistical significance 
during August 14–September 24, 2023 (Figure 2). 
That alarm signal coincided with an observed uptick 
in overall CHCO ED visits, hospital ward and ICU 
admissions, and enterovirus/rhinovirus detections 
from clinical testing of respiratory specimens. In 
August 2022, an updated primer-probe set designed 
against subclade B3 viruses detected EV-D68 in 5 re-
spiratory specimens that the 2014 clade B1-targeted 
primer-probe set failed to detect (20,21). On the basis 
of those results, we converted all EV-D68 surveillance 
to the updated primer-probe set for all samples test-
ed. Overall, EV-D68 detections were noted at low lev-
els as early as June 19, 2022, increasing substantially 
the week of August 7, 2022, to a peak positivity rate 
of 78.6% in selected enterovirus/rhinovirus samples 
collected during the week of August 21, 2022. In total, 
529 enterovirus/rhinovirus–positive clinical speci-
mens were tested during June 15–November 3, 2022, 
and 121 (22.9%) were positive for EV-D68 (Figure 2).

After clinical laboratory surveillance confirmed 
EV-D68 as the cause of the enterovirus/rhinovirus 
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spike in respiratory illness in Colorado, CHCO, CD-
PHE, and CDC coordinated local, state, and national 
public health responses. On September 1, 2022, CD-
PHE issued a statewide Colorado Health Alert Net-
work message about EV-D68 circulation in Colorado, 
which contained education on AFM and reporting 
requirements. CHCO leadership activated a plan 
for emergency surge staffing and hospital bed avail-
ability for the expected increase in respiratory illness 
case volumes. On September 2, 2022, they released 
systemwide communications alerting providers of 
the EV-D68 outbreak and potential for AFM cases to 
follow. Early identification of the outbreak enabled 
advanced purchasing before the peak of the surge 
to help secure the CHCO supply chain for pediatric 
formulations of asthma medications and respiratory 

support supplies, which subsequently became a na-
tionwide shortage. On September 9, 2022, after being 
alerted of increases in asthma-like illnesses and detec-
tion of sustained EV-D68 circulation by CDPHE and 
the CDC New Vaccine Surveillance Network sites, 
CDC released a nationwide Health Alert Network 
about severe respiratory illnesses associated with en-
terovirus/rhinovirus infections, including EV-D68 
(22). In addition, a “Dear Provider” letter was mailed 
on September 20, 2022, to Colorado medical provid-
ers describing signs and symptoms of AFM and pro-
viding diagnosis and management recommendations 
and reporting requirements.

By late September 2022, EV-D68 respiratory syn-
dromic surveillance showed decreasing levels of asth-
ma-like illness cases in the CHCO ED, and clinical 
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Figure 2. Multimodal surveillance during EV-D68 outbreak in Colorado, USA, 2022. A) Multimodal EV-D68 syndromic, clinical laboratory, 
and wastewater surveillance. To simplify the presentation of the temporal relationship between clinical positivity rates and the signal in 
wastewater, the viral concentrations of EV-D68 for the 3 utilities in this study are aggregated. B) Syndromic surveillance for asthma-like 
respiratory disease. C) Clinical laboratory surveillance for EV-D68 respiratory disease at CHCO. D) Wastewater surveillance for EV-D68 
by wastewater utility service area. To generate the line presented in the graph, the concentration values for the 3 utilities were added 
together and averaged (mean) by sample collection date. The sample collection dates and cadence were uniform over time across 
all 3 utilities. The data are an estimation of the overall viral signal from the adjacent sewershed areas within the Denver metropolitan 
region (panel D; Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/30/3/23-1223-App1.pdf). AFM, acute flaccid myelitis; CDC, 
Centers for Disease Control and Prevention; CHCO, Children’s Hospital Colorado; CHPHE, Colorado Department of Public Health and 
Environment; EV, enterovirus; HAN, Health Alert Network; RV, rhinovirus.
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laboratory surveillance showed decreasing EV-D68 
detection rates. The syndromic alarm signal de-acti-
vated, and observed rates returned to expected levels 
by mid-November in conjunction with EV-D68 clini-
cal laboratory detections decreasing below 10%. The 
syndromic alarm period coincided with the increased 
EV-D68 circulation, and the alarm signal disappeared 
when the EV-D68 outbreak waned, even with a con-
current dramatic increase in CHCO ED visits and 
admissions resulting from a subsequent and overlap-
ping, early, and large surge in respiratory syncytial 
virus bronchiolitis cases (Appendix Figure 2) (23).

Despite the substantial EV-D68 respiratory ill-
ness outbreak in Colorado and throughout the 
United States in 2022, the number of AFM cases was 
fewer than would be expected based on increases 
reported during previous years with substantial EV-
D68 circulation. During 2022, CDC classified 4 sus-
pected AFM cases that were reported in Colorado 
as confirmed or probable cases. In comparison, CDC 
confirmed 17 AFM cases in Colorado in 2018 and 11 
in 2014 during peak years. Similarly, nationwide in 
the United States, 44 cases of AFM were confirmed 
in 24 states in 2022, compared with 238 in 42 states in 
2018, 153 in 29 states in 2016, and 120 in 34 states in 
2014, during peak years correlating with substantial 
EV-D68 circulation (24).

After the 2022 outbreak, CDPHE retrospectively 
tested wastewater for EV-D68 by using 117 samples 
from 3 facilities dating back to June 1, 2022, which 
were banked as part of the CDPHE Wastewater 
Surveillance Program. EV-D68 was first detected in 
wastewater on July 5, 2022, shortly after it was ini-
tially detected by clinical laboratory surveillance on 
June 19, 2022. Quantification and preliminary trend 
analysis of wastewater detection demonstrated an in-
creasing trend in all 3 sampled sewersheds on July 

18, 2022, nearly 1 month before the EV-D68 syndrome 
surveillance alarm was triggered. A similar temporal 
pattern followed the EV-D68 respiratory syndromic 
and clinical laboratory surveillance signals by 1–2 
weeks (Figure 2) with geospatial and temporal corre-
lation of ZCTA-level clinical laboratory EV-D68 case 
detections and detection of EV-D68 in wastewater 
from the corresponding sewersheds (Figures 3,4). 

Discussion
We implemented a multimodal surveillance system 
in Colorado for EV-D68 and AFM, which promptly 
and accurately detected the large EV-D68 outbreak in 
the fall of 2022, enabling actionable, real-time surge 
planning and effective public health messaging. Each 
layer of surveillance independently provided unique 
insights into pathogen emergence, disease associa-
tions and burden, and community circulation; inter-
dependently, the multiple layers of surveillance com-
plemented each other with the potential to optimize 
performance and minimize limitations of the other 
layers in real-time in the future.

Rare, but severe, complications of emerging 
infectious diseases are often and appropriately the 
first to be recognized as public health priorities and 
therefore are typically the initial targets of surveil-
lance to provide information about their epidemiolo-
gy, etiology, and disease burden. The case definition 
for AFM was promptly constructed after the initial 
outbreak was reported in Colorado in 2014 (25). Sub-
sequent national syndromic surveillance by CDC 
has been ongoing since that time; however, the reli-
ance on astute clinicians to recognize, diagnose, and 
report suspected cases leads to continued case un-
derascertainment (19). Substantial public health out-
reach efforts, including education campaigns (26), 
establishment of guidelines (4,27), and activation  
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Figure 3. Temporal and geospatial correlation between clinical laboratory confirmed EV-D68 cases and wastewater detections, 
Colorado, USA, 2022. Cumulative positive EV-D68 clinical cases for June–November 2022 are shown by ZIP Code Tabulated Area 
overlaying Denver metropolitan area sewersheds. Data source: Children’s Hospital Colorado. EV, enterovirus; WWTP, wastewater 
treatment plant.
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of local and state public health authorities and labo-
ratories, have been used to improve recognition, 
reporting, and testing of AFM cases to support sur-
veillance efforts. Through this pathogen-agnostic 
surveillance, EV-D68 was identified as the predomi-
nant pathogen driving the seasonal, biennial surges 
in AFM in the United States (28).

After a causal association was established (29,30), 
public health outreach efforts were focused on timely, 
targeted AFM education tied to periods of local EV-
D68 circulation. Colorado enacted an enhanced AFM 
outreach program, which included local, state, and 
national notifications of EV-D68 circulation (18) and 
targeted provider outreach to heighten awareness of 
AFM during the 2022 outbreak. A large AFM spike 
was not detected in Colorado or the United States 
in 2022, which was the first time since 2014 that in-
creased EV-D68 detection was not associated with in-
creased AFM cases. Although much remains to be in-
vestigated with regard to the virologic, immunologic, 
and epidemiologic reasons behind that decoupling, 
the enhanced AFM surveillance enacted in Colorado 
was essential for establishing with confidence that the 
paucity of AFM reports during this period was most 
likely caused by a true lack of increased AFM cases 
in the community and not by a lack of recognition or 
failure to report.

In addition to syndromic surveillance for rare, se-
vere complications, syndromic surveillance for more 
common presentations of an emerging pathogen can 
be used to signal outbreaks and improve knowledge 
of disease burden, especially for pathogens for which 
widespread testing is not available. During the 2014 
outbreak, EV-D68–specific diagnostic testing was 
available only at CDC on enterovirus/rhinovirus–
positive specimens from ICU-level patients with re-
spiratory disease. Retrospectively, we established 
that syndromic surveillance of resource use for chil-
dren with asthma-like respiratory diseases provided a  

better estimate of disease burden (2), which was used 
in an early warning system that sent an alarm as the 
first sign of an impending outbreak in 2022. Because 
of continued, limited, and selective sampling and test-
ing for EV-D68, syndromic surveillance for asthma-
like illness still provides the best estimate of EV-D68 
disease burden. In 2022, that signal was also shown to 
specifically track with EV-D68, because it did not gen-
erate an alarm signal during the subsequent waves of 
respiratory syncytial virus, SARS-CoV-2, or influenza 
virus (Appendix Figure 2).

Clinical laboratory surveillance adds key insights 
into correlating syndromic signals with specific patho-
gens; however, it is reliant on test availability and 
performance. Although the enterovirus/rhinovirus 
signal from clinical testing is a useful early indicator, 
if this signal is used alone, EV-D68 epidemics can be 
misattributed to annual fall back-to-school rhinovirus 
resurgences. Detecting EV-D68 through clinical labo-
ratory surveillance enabled early identification of the 
2022 outbreak in Colorado compared with other cen-
ters in the United States, where difficulty interpret-
ing the source of the enterovirus/rhinovirus spike on 
clinical platforms contributed to delayed recognition 
of the outbreak cause (J. Newland, PedsID ListServ, 
pers. comm, August 2022).

Until an EV-D68-specific target is included on 
commercial clinical testing platforms, the additional 
step of performing EV-D68–specific PCR on entero-
virus/rhinovirus–positive specimens is necessary for 
clinical laboratory surveillance to confirm EV-D68 as 
the source of a respiratory disease outbreak as well as 
to detect lower level circulation that would not meet 
the alarm threshold of syndromic surveillance.

A key limitation of pathogen-specific PCR testing 
for newly emerging and constantly evolving RNA 
viruses is that primers must be matched to current-
ly circulating strains to ensure adequate sensitivity. 
The lack of detection of the 2022 EV-D68 B3 strain by 
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Figure 4. Temporal and geospatial correlation between clinical laboratory confirmed EV-D68 cases and wastewater detections, 
Colorado, USA, June–December 2022. Data source: Children’s Hospital Colorado. EV, enterovirus; WW, wastewater.
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primers directed at the 2014 B1 strain demonstrated 
the value of the layers of syndromic surveillance in 
our multimodal system, because a syndromic signal 
that is not accompanied by PCR detection can alert 
clinical and public health laboratories to investigate, 
validate, and update primer-probe sets for detecting 
actively circulating strains. That iterative modifica-
tion interdependently informed by our layered mul-
timodal surveillance model enabled us to confirm 
that EV-D68 was the source of the 2022 respiratory 
outbreak and to assess the burden of disease among 
hospitalized children.

Wastewater surveillance and sequencing was ini-
tially developed for polio eradication, but scientific 
advancement has accelerated during the COVID-19 
pandemic (31), serving as proof-of-principle of its 
public health utility for emerging pathogens, such 
as EV-D68 (32,33). Although our wastewater surveil-
lance for EV-D68 was conducted retrospectively af-
ter the 2022 outbreak, we found direct temporal and 
geospatial correlation with our clinical laboratory 
surveillance from ZIP codes of hospitalized children 
with EV-D68 to validate this approach. Wastewater 
detections temporally preceded our syndromic sur-
veillance alarm signal by 1–2 weeks, demonstrating 
future potential, if performed in real-time, to serve 
as the earliest warning of community circulation to 
detect an impending outbreak at the local level and 
could be expanded to track regional, national, or in-
ternational spread.

EV-D68 is thought to be primarily transmitted 
and shed in respiratory secretions; fecal shedding is 
less common because most strains are acid-labile and 
degrade in the gastrointestinal tract (7). Our study is 
consistent with other published studies (34,35) that 
have demonstrated that even pathogens that are pre-
dominantly shed other than in feces, such as EV-D68, 
can still be detected and tracked through wastewater 
because of the high sensitivity of that method. Our 
study confirms that wastewater surveillance devel-
oped for poliovirus can be extended to EV-D68 and 
in the future probably beyond to other known and 
emerging enteroviruses associated with AFM. A key 
limitation to that approach is that enteroviruses, and 
many other pathogens, can be asymptomatically shed 
in feces and circulate among the community without 
causing substantial disease (36,37). That limitation 
can be overcome by the multimodal nature of our 
surveillance model by comparing detected strains in 
wastewater with those from clinical laboratory sur-
veillance on specimens collected from patients with 
clinically relevant disease to verify that wastewater 
pathogen signals are of public health importance.

Last, a future component of multimodal surveil-
lance being developed is the use of immunologic 
surveillance to assess the underlying immunologic 
background for an emerging pathogen. As a patho-
gen emerges, or reemerges, it is important to know 
the levels of prior exposure and immunity that may 
protect against future infection and affect transmis-
sion dynamics to inform epidemiologic models and 
predict future circulation patterns (38). Serosurveys 
to determine age-based seroprevalence can also help 
assess duration of maternal immunity, timing of pri-
mary exposure, and durability of humoral immu-
nity (39), although they can be affected by antibody 
cross-reactivity (40). Those efforts are currently under 
way for EV-D68 through the PREMISE EV-D68 pilot 
study, which serves as proof-of-principle for an im-
munologic surveillance approach to pandemic pre-
paredness to expedite preemptive development of 
countermeasures, such as monoclonal antibodies and 
vaccine candidates (14).

The multimodal surveillance system piloted for 
EV-D68 in Colorado is the culmination of several 
stepwise surveillance efforts implemented over the 
previous 8 years, which come with limitations. Differ-
ences in implementation timing, particularly the pro-
spective versus retrospective nature, limit the ability 
to assess actionable effects of each layer. Differences 
in catchment between surveillance layers may influ-
ence correlation between signals. Our pilot surveil-
lance program focused on 1 pathogen in 1 geographic 
region during 1 outbreak year; the model should be 
studied for other pathogens across broader regions in 
a prospective longitudinal manner to determine gen-
eralizability. Last, surveillance is meant to be action-
able, but delay from signal detection to public health 
intervention diminishes potential effect and is a po-
tential target for improvement.

Together, the layers of multimodal surveillance 
enacted in Colorado for EV-D68 rapidly detected the 
2022 EV-D68 outbreak and enabled preparedness ef-
forts for an effective local, state, and national response 
while creating the potential for more advanced future 
preparedness efforts. Actionable surveillance results 
enabled surge planning by hospital administration 
to increase staffing, hospital bed availability, and the 
supply chain for critical medications and also alerted 
providers to a potential influx of patients and pro-
vided recommendations to improve case recognition 
and clinical management. Although AFM cases were 
rare during the EV-D68 outbreak in 2022, our surveil-
lance also demonstrates usefulness as an early warn-
ing system to trigger public health outreach efforts to 
enhance readiness to respond to future outbreaks of 
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enteroviruses associated with AFM. Our multimodal 
approach, extending from surveillance for rare, severe 
complications to more common disease presentations 
and community circulation and immunity, demon-
strates the value of investing in surveillance to inform 
preparedness to respond to the uncertainty that lies 
ahead with EV-D68 and other emerging pathogens.
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Monkeypox virus (MPXV) is an emerging zoo-
notic Orthopoxvirus causing mpox in humans, a 

disease similar to the eradicated smallpox (1). Since 
identification in a monkey in 1958 (2) and a human in 
1970 (3), MPXV-associated outbreaks have occurred 
primarily in rural rainforests in countries of Central 
and West Africa (4–6).

Mpox is characterized by an influenza-like syn-
drome accompanied by adenopathy and maculopap-
ular rashes typically developing on the palms of the 
hands and soles of the feet (4,7). For infected persons, 
supportive care and antiviral treatments, including 
cidofovir and tecovirimat, are provided (4). Cross-
immunity with smallpox vaccination and a new gen-
eration of smallpox vaccines equally offer some pro-
tection (8–10). However, after smallpox vaccination 
was discontinued in the early 1980s, herd immunity 
gradually declined, enabling re-emergence of mpox, 
which is highlighted by the increased number of cases 
in Africa during the past 3 decades (4,8,11–13). Since 
early 2022, case counts have surged, and ≈1,215 con-
firmed mpox cases and 219 deaths were reported in 
Africa by December 28, 2022 (14). Before April 2022, 
mpox cases in the Western Hemisphere were typical-
ly reported from exposure to the exotic pet trade and 
international travel (15–20). Since then, MPXV-asso-
ciated outbreaks have occurred worldwide, affecting 
>100 countries outside Africa (4,21) and becoming a 
global public health concern.

Primary MPXV transmission can occur through 
direct contact with body fluids or skin lesions of in-
fected animals or indirectly via contaminated fomi-
tes. Similar contact with an infected person or with 
infected respiratory droplets might also lead to hu-
man-to-human secondary transmission, the main 
transmission mode of the 2022 global outbreak (4,22). 
Historically, primary zoonotic transmission was more 
common and mostly involved an at-risk population 
of hunters, butchers, and bushmeat handlers; second-
ary transmission was rare, but nosocomial and house-
hold transmission have been described (3,13,23–25).

Concurrent Clade I and Clade II 
Monkeypox Virus Circulation,  

Cameroon, 1979–2022 
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During 1979–2022, Cameroon recorded 32 laboratory-
confirmed mpox cases among 137 suspected mpox 
cases identified by the national surveillance network. 
The highest positivity rate occurred in 2022, indicat-
ing potential mpox re-emergence in Cameroon. Both 
clade I (n = 12) and clade II (n = 18) monkeypox virus 
(MPXV) were reported, a unique feature of mpox in 
Cameroon. The overall case-fatality ratio of 2.2% was 
associated with clade II. We found mpox occurred only 
in the forested southern part of the country, and MPXV 
phylogeographic structure revealed a clear geographic 
separation among concurrent circulating clades. Clade 
I originated from eastern regions close to neighboring 
mpox-endemic countries in Central Africa; clade II 
was prevalent in western regions close to West Africa. 
Our findings suggest that MPXV re-emerged after a 
30-year lapse and might arise from different viral res-
ervoirs unique to ecosystems in eastern and western 
rainforests of Cameroon.



Clade I and II MPXV Circulation, Cameroon

Phylogenetic studies report 2 distinct MPXV 
clades: clade I, prevalent in Central Africa, and 
clade II, endemic to West Africa (5,6,26–28). How-
ever, Cameroon is an exception, and both clades 
concurrently circulate in the country (6,29). Clade 
I is further subdivided into lineages 1–5 and clade 
II into subclades IIa and IIb; clade IIb is respon-
sible for the multicountry outbreak that began in 
2022 (27,28,30). Globally, MPXV lethality rates 
vary from 1% to 10%, and clade I is known to have 
higher mortality rates than clade II (4,24,25). The 
MPXV animal reservoir has not yet been identified, 
but the virus can infect a wide range of mammals, 
and Funisciurus squirrels and Graphiurus lorraineus 
mice are thought to be the most probable MPXV  
reservoirs (31–33).

In Cameroon, only 4 confirmed mpox cases were 
documented before the 2022 outbreak, 1 in each 1979, 
1980, 1989, and 30 years later in 2018 (29,34–36). Ac-
cording to public health reports, more cases could 
have occurred and been undocumented in the coun-
try, particularly during 2018–2021, and especially 
in 2022, during which an mpox outbreak of unprec-
edented magnitude occurred and had recurrent clus-
ters of cases (37). However, whether those infections 
were associated with importations from neighboring 
countries or from occurrence of indigenous prima-
ry or secondary transmission remains unclear (29). 
Overall, data on the epidemiologic features of MPXV 
occurrence and transmission dynamics in Cameroon 
are scarce. We investigated the clinical, epidemiolog-
ic, and molecular features of MPXV-associated out-
breaks in Cameroon.

Methods

Sample Location
Cameroon is in central Africa and is divided into 10 
administrative regions. Cameroon is known as Africa 
in miniature for its diverse agroecologic background: 
the steppe and savanna in the Far North, North, and 
Adamawa regions; the coastal zones in the Littoral 
and Southwest regions; mountain highlands in the 
Northwest and West regions; and the rainforest in the 
Centre, South, Southwest, and East regions (38). Cam-
eroon has 3 major tropical forests: the Congo Basin 
Forest that extends across the East, South, and Centre 
regions; the Guinea moist forest in the western and 
Adamawa regions; and the Cameroonian Highlands 
forests in the Northwest and Southwest regions. Those 
forests are crossed by several waterways, including the 
Sanaga River, the largest river in Cameroon (33–40; J. 
Thia, master’s thesis, University of Canterbury, 2014,  

https://www.researchgate.net/publication/ 
272494772_The_plight_of_trees_in_disturbed_forest_
conservation_of_Montane_Trees_Nigeria).

Sample Collection
We defined a suspected case as >1 clinical signs or 
symptoms, including headache, asthenia, adenopa-
thy, myalgia associated with fever, or gradually de-
veloping rashes spreading to other parts of the body, 
including the soles of the feet and palms of the hands. 
We defined a probable case as clinical manifestations 
without virologic confirmation but an epidemio-
logic link with another probable or confirmed case.  
A confirmed case was any case with laboratory-con-
firmed MPXV.

We recorded epidemiologic data, including de-
mographic and clinical information, for all suspected 
cases during 1979–2022. We collected a 5-mL blood 
sample, vesicle swab, crust samples, or a combination 
of samples, from case-patients who consented to be 
tested. We shipped samples under a triple packaging 
system to the Centre Pasteur du Cameroun (CPC), 
which is the national reference laboratory for mpox 
diagnosis in Cameroon. We excluded patients from 
whom a sample could not be collected.

Laboratory Confirmation of MPXV Infection
At CPC, samples were received, processed, and in-
activated in the Biosafety Level 3 laboratory. We 
purified total DNA by using the QIAamp DNA 
Mini Kit (QIAGEN, https://www.qiagen.com) 
according to the manufacturer’s instructions. We 
tested purified DNA for MPXV by the generic real-
time PCR Taqman assay, as previously described 
(41). For positive samples displaying a cycle thresh-
old (Ct) value <37, we performed further genotyp-
ing by using real-time PCRs specifically targeting 
MPXV clade I and II (41).

We further amplified a subset of 8 positive sam-
ples from the 2022 outbreak that had Ct values <20 
by using a PCR targeting a portion of the MPXV A-
type inclusion (ATI) gene, according to a previously 
described protocol (42). We used a 1% green-stained 
agarose gel to reveal resulting amplicons, which 
we sent to Inqaba Biotechnical Industries (Pretoria, 
South Africa), a commercial service provider, for 
Sanger sequencing.

Phylogenetical Analyses
We assembled newly determined sequences and cor-
rected by using CLC Main Workbench software (QIA-
GEN). We aligned resulting consensus sequences  
by using MAFFT version 7 (https://mafft.cbrc.jp) 
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and an extended dataset of 56 MPXV reference 
genomes from GenBank (Appendix Tables 1, 2, 
https://wwwnc.cdc.gov/EID/article/30/3/23-
0861-App1.pdf). We submitted final alignments 
to the software-integrated Model Finder program 
(IQ-TREE, http://www.iqtree.org) to select the 
best evolutionary model based on Bayesian and 
Akaike information criterion. We used IQ-TREE 
version 1.6.12 (http://www.iqtree.org) to infer 
maximum-likelihood phylogenetic trees on MPXV 
ATI sequences based on the Hasegawa-Kishino-
Yano plus amino acid substitution model, apply-
ing 1,000 bootstrap replicates. We submitted newly 
determined sequences to GenBank (accession nos. 
OR038717–24) (Appendix Table 2).

Statistical Analysis and Mapping
To provide a complete picture of the epidemiology 
of mpox in Cameroon, we added the 4 previously 
documented mpox cases from Cameroon to our 
dataset, along with available information collected 
from the literature and Ministry of Health archives 
(29,34–36). We summarized sociodemographic and 
clinical characteristics by using frequencies for cat-
egorical variables; we used median and interquar-
tile range (IQR) for quantitative variables. We com-
pared PCR-confirmed cases with nonconfirmed 
suspected cases by using Pearson χ2 or Fisher exact 
tests for categorical variables and Wilcoxon test for 
quantitative variables. We used univariate logistic 
regression to identify factors associated with MPXV 
infection and estimate crude odds ratios (ORs) and 
95% CIs. We were unable to infer multivariable 
analysis models, which failed to converge because 
too many data were missing (Tables 1, 2). We con-
sidered p<0.05 statistically significant and p<0.07 
marginally significant. We performed all analyses 
in R version 4.1 (The R Foundation for Statistical 
Computing, https://www.r-project.org). We used 
Quantum GIS version 3.30.1 (QGIS, https://qgis.
org) to analyze and map mpox cases by health 
zones and geographic data.

Ethics
Sample collection and laboratory analyses were con-
ducted within the framework of the Cameroon na-
tional surveillance program. Under that program, 
we obtained written or oral informed consent from 
all persons with suspected mpox after we provided 
detailed information and explanations of the sam-
pling purpose. We obtained informed consent from 
parents or recognized guardians for persons <15 
years of age.

Results
Within the mpox surveillance system in Camer-
oon, during 1979–2022, we identified 137 suspected 
mpox cases, including 74 (54.41%) among male and 
62 (45.59%) among female persons; 1 case had miss-
ing data for sex (Table 1). The median age of case-
patients was 11 years (range 2 weeks–75 years; IQR 
4–27 years); nearly half (48.18%) were <10 years of 
age (Table 1).

Molecular Diagnostic Results
Mpox virus generic PCR showed 32 (23.36%) labo-
ratory-confirmed mpox cases of 137 patients tested 
during 1979–2022 in Cameroon (Table 1; Figure 1, 
panel A; Appendix Table 3). Before 2018, only 3 
sporadic cases were confirmed as human MPXV in-
fection. After a 30-year gap without reported mpox 
cases, the surveillance system continuously iden-
tified new mpox cases during 2018–2022. Among 
suspected cases, only 1 was found in 2018 and 1 
in 2019. In 2020 and 2021, 5 laboratory-confirmed 
cases were recorded each year. During 2022, mpox 
cases dramatically increased to 17 confirmed cases 
among 84 suspected cases (Figure 1, panel A; Ap-
pendix Table 3).

Genotyping of real-time PCR results identified 
12 (9%) patients infected with MPXV clade I and 18 
(13%) infected with MPXV clade II among 137 sus-
pected cases; 2 (1%) historic confirmed cases lacked 
clade determination results (Table 1; Figure 1, panel 
B; Appendix Tables 2, 3). Among all laboratory-con-
firmed cases, only 1 death was recorded, in a patient 
infected with MPXV clade II. Ministry of Health in-
vestigation records indicated 2 additional patient 
deaths among persons with typical mpox clinical 
manifestations who were epidemiologically linked 
to 2 confirmed case-patients infected with a clade II 
MPXV strain. However, no specimens were collect-
ed before death; thus, we considered those probable 
cases. Including the probable cases, the overall case-
fatality ratio (CFR) in Cameroon was 2.2% (3/139) 
among confirmed and suspected cases, and all deaths 
were associated with viral clade II.

Epidemiology and Clinical Characteristics  
of Confirmed Mpox Cases
Univariable analysis revealed no statistically signif-
icant difference in increased likelihood of infection 
by sex: 21/74 (28.38%) male and 11/62 (17.74%) fe-
male persons had confirmed MPXV infection (Table 
1). MPXV-confirmed case-patients had a median 
age of 21.5 years (range 2 weeks–52 years; IQR 8.5–
32.25 years). MPXV infection was more prevalent 
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among adults >20 years of age; in all, 35.56% had 
confirmed MPXV infection, compared with 17.78% 

among younger MPXV-confirmed case-patients (p = 
0.025). However, we saw no statistically significant  
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Table 1. Molecular diagnostic and epidemiologic characteristics of suspected and confirmed mpox cases in a study of concurrent 
clade I and clade II monkeypox virus circulation, Cameroon, 1979–2022* 

Epidemiologic characteristics 
MPXV real-time PCR, no. (%) 

Crude OR (95% CI) p value Positive Negative 
Total no. (%), n = 137  32 (23.36) 105 (76.64) 

 
 

MPXV clades     
 Clade I, n = 12 12 (100.00) NA NA 1 
 Clade II, n = 18 18 (100.00) NA NA  
Sex 

   
 

 M, n = 74 21 (28.38) 53 (71.62) Referent 0.142 
 F, n = 62 11 (17.74) 51 (82.26) 1.84 (0.81–4.19)  
Age 

   
 

 Minimum 0 0 NA 0.075 
 1st quartile 8.5 4 NA  
 Median 21.5 10 NA  
 Mean 21.69 15.64 1.02 (1.00–1.05)  
 3rd quartile 32.25 22.5 NA  
 Maximum 52 75 NA  
Age group, y 

   
 

 0–10, n = 66 10 (15.15) 56 (84.85) Referent 0.101 
 11–20, n = 24 6 (25.00) 18 (75.00) 1.87 (0.60–5.85)  
 21–30, n = 18 6 (33.33) 12 (66.67) 2.8 (0.85–9.19)  
 >30, n = 27 10 (37.04) 17 (62.96) 3.29 (1.17–9.24)  
Born before 1980 

   
 

 Y, n = 124 27 (45.45) 97 (54.55) Referent 0.092 
 N, n = 11 5 (21.77) 6 (78.23) 3.07 (0.86–10.88)  
Born before 2002 

   
 

 Y, n = 90 16 (17.78) 74 (82.22) Referent 0.025 
 N, n = 45 16 (35.56) 29 (64.44) 2.55 (1.13–5.77)  
Occupation 

   
 

 Underage/none, n = 29 6 (20.69) 23 (79.31) Referent 0.067 
 Pupil/student, n = 54 8 (14.81) 46 (85.19) 0.67 (0.21–2.15)  
 Health worker, n = 4 2 (50.00) 2 (50.00) 3.07 (0.84–11.17)  
 Farmer, n = 18 8 (44.44) 10 (55.56) 3.83 (0.44- 33.11)  
 Others†, n = 14 5 (35.71) 9 (64.28) 2.13 (0.52–8.77)  
Contact with human case     
 Y, n = 57 17 (29.82) 40 (70.18) Referent 0.304 
 N, n = 56 10 (17.86) 46 (82.14) 0.51 (0.21–1.24)  
 Unknown, n = 3 1 (33.33) 2 (66.67) 0.17 (0.10–13.86)  
Contact with animal     
 Y, n = 37 12 (32.43) 25 (67.57) Referent 0.143 
 N, n = 69 11 (15.94) 58 (84.06) 0.40 (0.15–1.0)  
 Unknown, n = 7 2 (28.57) 5 (71.43) 0.88 (0.14–4.93)  
Contact with wild or domestic animal      
 Domestic animal, n = 13 3 (23.08) 10 (76.92) Referent 0.06 
 Wild animal, n = 13 6 (46.15) 7 (53.85) 2.86 (0.53–15.47)  
 No contact, n = 69 11 (15.94) 58 (84.06) 0.63 (0.15–2.67)  
Travel history 

   
 

 Y, n = 21 5 (23.81) 16 (76.19) Referent 0.831 
 N, n = 96 25 (26.04) 71 (73.96) 0.89 (0.29–2.67)  
Geographic distribution     
 Adamawa, n = 1 0 1 (100.00) Referent 0.831 
 Centre, n = 32 11 (34.36) 21 (65.63) 0 to   
 East, n = 23 3 (13.04) 20 (86.96) 0 to   
 Far-North, n = 2 0 2 (100.00) 0 to   
 Littoral, n = 4 1 (25) 3 (75.00) 0 to   
 North, n = 1 0 1 (100.00) 0 to   
 North-West, n = 25 6 (24.00) 19 (76.00) 0 to   
 South, n = 9 1 (11.00) 8 (88.89) 0 to   
 South-west, n = 39 10 (25.64) 29 (74.36) 0 to   
 Other‡ 0 1 0 to   
*Bold text indicates statistical significance. Some categories might not add to 100% because of missing data. Missing data were not accounted for in the 
statistical analysis. MPXV, monkeypox virus; NA, not applicable; OR, odds ratio. 
†Others include teachers, traders, driver or motorbiker, housewife, informal, retired. 
‡Equatorial Guinea. 
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difference for adults born before 1980 than for the 
rest of the population (p = 0.092). Larger datasets 
would be needed to confirm the observed trend.

MPXV infection was mostly associated with occu-
pational activities involved in farming (OR 3.83, 95% CI 
0.44–33.11) (Table 1). Similarly, potential nosocomial  
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Table 2. Clinical characteristics of suspected and confirmed mpox cases in a study of concurrent clade I and clade II monkeypox virus 
circulation, Cameroon, 1979–2022* 

Characteristics 
MPXV RT-PCR, no. (%) 

Crude OR (95% CI) p value Positive Negative 
Total no. (%), n = 137  32 (23.36) 105 (76.64)   
Active skin lesions     
 Lesions, n = 124 29 (23.39) 95 (76.61) Referent 0.289 
 No lesions, n = 10 1 (10.00) 9 (90.00) 2.75 (0.33–22.6) 

 

Lesion progress     
 Diffuse, n = 23 5 (21.74) 18 (78.26) Referent 0.329 
 Head to limbs, n = 25 4 (16.00) 21 (84.00) 0.69 (0.16–2.95) 

 

 Limbs to head, n = 15 6 (40.00) 9 (60.00) 2.4 (0.57–10.04) 
 

 Others, n = 24 4 (16.67) 20 (83.33) 0.72 (0.17–3.1) 
 

Lesions at the same stage     
 Y, n = 43 13 (30.23) 30 (69.77) Referent 0.195 
 N, n = 53 10 (18.87) 43 (81.13) 1.86 (0.72–4.8) 

 

Lesions of the same size     
 Y, n = 49 13 (26.53) 36 (73.47) Referent 0.546 
 N, n = 47 10 (21.28) 37 (78.72) 1.34 (0.52–3.43) 

 

Lesions deep     
 Y, n = 42 11 (26.19) 31 (73.81) Referent 0.767 
 N, n = 51 12 (23.53) 39 (76.47) 1.15 (0.45–2.97) 

 

Fever before rash     
 Y, n = 86 22 (25.58) 64 (74.42) Referent 0.149 
 N, n = 30 4 (13.33) 26 (86.67) 2.23 (0.7–7.12) 

 

 Missing 6 15 NA 
 

Headache     
 Y, n = 51 15 (29.41) 36 (70.59) Referent 0.1 
 N, n = 61 10 (16.39) 51 (83.61) 2.13 (0.86–5.26) 

 

Cough     
 Y, n = 38 13 (34.21) 25 (65.79) Referent 0.066 
 N, n = 76 14 (18.42) 62 (81.58) 2.3 (0.95–5.59) 
Vomiting, nausea     
 Y, n = 15 4 (26.67) 11 (73.33) Referent 0.722 
 N, n = 98 22 (22.45) 76 (77.55) 1.26 (0.36–4.34) 

 

Chills, sweat     
 Y, n = 48 18 (37.50) 30 (62.50) Referent 0.003 
 N, n = 66 9 (13.34) 57 (86.36) 3.8 (1.52–9.48) 

 

Lymphadenopathy     
 Y, n = 29 12 (41.38) 17 (58.62) Referent 0.009 
 N, n =84 14 (16.37) 70 (83.33) 3.53 (1.38–9.00) 

 

Sore throat when swallowing     
 Y, n = 28 16 (51.14) 12 (42.86) Referent <0.001 
 N, n = 85 10 (11.76) 75 (88.24) 10 (3.69–27.12) 

 

Oral ulcer     
 Y, n = 18 11 (61.11) 7 (38.89) Referent <0.001 
 N, n = 95 15 (15.79) 80 (84.21) 8.38 (2.80–25.09) 

 

Itchy lesions     
 Y, n = 75 19 (25.33) 56 (74.67) Referent 0.397 
 N, n = 43 8 (18.60) 35 (81.40) 1.48 (0.59–3.75) 

 

 Unknown 5 14 NA 
 

General fatigue     
 Y, n = 62 20 (32.25) 42 (67.74) Referent 0.016 
 N, n = 52 7 (13.46) 45 (86.54) 3.06 (1.17–7.98) 

 

Myalgia     
 Y, n = 29 9 (31.03) 20 (68.97) Referent 0.244 
 N, n = 84 17 (20.24) 67 (79.76) 1.77 (0.69–4.59) 

 

 Unknown 6 18 NA 
 

Conjunctivitis     
 Y, n = 14 2 (14.29) 12 (85.71) Referent 0.385 
 N, n = 99 24 (24.24) 75 (75.76) 0.52 (0.11–2.49) 

 

*Bold text indicates statistical significance. Missing data is for patients who did not provide an answer. Unknown is for persons who replied that they did 
not know. Some categories might not add to 100% because of missing data. Missing data were not accounted for in the statistical analysis. MPXV, 
monkeypox virus; NA, not applicable; OR, odds ratio. 
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transmission was identified in health workers (OR 
3.07, 95% CI 0.84–11.17). Other activities, including 
teaching, trading, or driving, when considered to-
gether, also appeared to be potential risk activities 
for secondary MPXV transmission (OR 2.13, 95% CI 
0.52–8.77). However, we found no association for 
secondary transmission in the 29.82% of MPXV-con-
firmed cases reporting past contact with persons who 
had mpox-like clinical signs (Table 1). Because mpox 
is typically zoonotic, we also assessed antecedent of 
animal exposures. We observed no association with 
unspecified animal contacts but observed a higher 
risk among confirmed cases (6/13 [46.15%]) who re-
ported contact with wild animals (OR 2.86, 95% CI 
0.53–15.47) compared with persons reporting con-
tact with domestic animals or having no contact with 
animals (Table 1). Among wild animal contact, study 
participants frequently mentioned squirrels, bats, cat-
erpillars, pangolins, rats, porcupines, and monkeys.

As expected from the case definition criterium 
requiring skin rashes, almost all (124/137 [90.5%]) 
MPXV-suspected cases had active skin lesions (Table 
2; Figure 2; Appendix Table 3). However, we observed 
no specific difference for lesion progress, deepness, 
size, or stage among MPXV-confirmed cases com-
pared with MPXV-negative persons (Table 2). Macu-
lopapular lesions were more prevalent in confirmed 
cases who had lesions on their palms and soles (Fig-
ure 2). Clinical data identified cough (OR 2.3, 95% CI 
0.95–5.59), chills or sweat (OR 3.8, 95% CI 1.52–9.48), 
lymphadenopathy (OR 3.53, 95% CI 1.38–9.00), sore 
throat when swallowing (OR 10, 95% CI 3.69–27.12), 
mouth ulcers (OR 8.38, 95% CI 2.8–25.09), and gen-
eral fatigue (OR 3.06, 95% CI 1.17–7.98) as potential 

symptoms associated with MPXV infection in Camer-
oon (Table 2; Figure 2). Among all suspected case-pa-
tients, ≈26% who reported experiencing fever before 
skin rashes developed were confirmed for MPXV in-
fection, but we saw no difference between confirmed 
cases with or without fever. In addition, MPXV-con-
firmed or -negative cases did not experience differ-
ences in headache (Table 2). We noted little difference 
in clinical severity in cases infected with clade I com-
pared with those infected with clade II (Appendix 
Table 4). The same was true for the exposure route; 
we found no association between zoonotic or human-
to-human transmission and a specific infecting viral 
clade (Appendix Table 4). However, because consid-
erable data were missing (Tables 1, 2) we were un-
able to perform a multivariable analysis. Therefore, 
concluding interpretations of the epidemiologic and 
clinical features of mpox infection in Cameroon are 
difficult to draw.

Geographic and Phylogenetic Analysis
Reported suspected mpox cases originated from 8 
administrative regions of Cameroon (Table 1; Fig-
ure 3). Most (97.08%) suspected cases were reported 
from the southern part of the country where all con-
firmed cases also originated. In particular, 1 (3.13%) 
case was confirmed in Littoral, 1 (3.13%) in the South, 
3 (9.38%) in the East, 6 (18.75%) in the Northwest, 
10 (31.25%) in the Southwest, and 11 (34.88%) in the 
Centre regions (Table 1; Figure 3; Appendix Table 3). 
Of note, a unique case confirmed in the Littoral re-
gion was originally from the Southwest and sought 
healthcare in Littoral. Genotyping of real-time PCR 
revealed that all clade I MPXV infections were  
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Figure 1. Mpox cases in a study of concurrent clade I and clade II MPXV circulation, Cameroon, 1979–2022. A) Epidemiologic curve of 
137 suspected mpox cases. A 30-year gap occurred between the first 3 reported mpox cases and the consecutive cases since 2018, 
demonstrating increased surveillance in the country. The peak in 2022 corresponds to the worldwide alert raised on mpox, which led to 
enhanced mpox surveillance in Cameroon. B) Mpox genotyping results showing both clade I and clade II MPXV were identified. MPXV, 
monkeypox virus; ND, not determined.
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confirmed in patients from the Centre, South, and 
East regions; all but 1 of clade II MPXV samples 
were recovered from patients from the Littoral, 
Northwest, and Southwest regions. Indeed, a clade 
II MPXV detected in the Centre region was an in-
ternally displaced person (IDP) originally from the 
Northwest region (Table 1; Appendix Table 3). The 
distribution of mpox cases points toward geographic 
segregation of the 2 viral clades in Cameroon. Those 
findings indicate a strong geographic association of 
MPXV genotypes in southern Cameroon, and that 
MPXV clade II is associated with the western part 
and the clade I with the eastern part of the country.

We obtained partial MPXV ATI gene sequenc-
es from 8 mpox-confirmed cases from 4 regions of 
Cameroon. We derived the newly determined se-
quences from samples collected in the Northwest 
(CPC code 22V-0972), Southwest (CPC codes 22V-
07739, 22V-07911, 22V-07968), Centre (CPC codes 
22V-05210, 22V-04865, 22V-4639), and South (CPC 
code 22V-6957) regions. Maximum-likelihood phy-
logenetic analysis of the 942 nt consensus sequenc-
es, including reference sequences (Appendix Ta-
bles 1–3), revealed that the 8 MPXV genomes from 
Cameroon segregated into clade I and clade II. As 
expected from the geographic association of MPXV 
isolates we report, MPXV clade I from the Centre 

and South regions grouped reliably with reference 
counterparts previously reported from countries 
in Central Africa, and clade II sequences from the 
Northwest and Southwest regions grouped con-
sistently with strains from West Africa (Figure 4). 
Clade II strains from Cameroon clustered reliably 
within subclade IIb with 83% bootstrap support 
(Figure 4). Altogether, genotypic and phylogenet-
ic analysis confirmed the concurrent circulation 
of both MPXV clades I and II in Cameroon with a 
striking geographic segregation.

Discussion
We examined the clinical, epidemiologic, and molec-
ular patterns of MPXV infection in Cameroon over a 
44-year period (1979–2022) as part of mpox surveil-
lance in the country. During 1979–2022, a total of 137 
persons were suspected of having mpox, and 32 were 
confirmed to be MPXV infected. Three persons died 
(CFR 2.2%) and death was associated with MPXV 
clade II. That CRF is much lower than those report-
ed in previous studies of MPXV clade I that showed 
CFRs of 7%–10% (13,43). Overall, CFRs are lower 
among patients infected with clade II, including in 
the 2022 global outbreak settings (4,25). We were 
not able to collect information on potential underly-
ing conditions of case-patients to determine whether  
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Figure 2. Maculopapular lesions 
in mpox patients from a study 
of concurrent clade I and clade 
II monkeypox virus circulation, 
Cameroon, 1979–2022. A–E) 
Deep maculopapular lesions of 
different sizes spread from the 
head (A, C) to hands (B) and 
diffuse to the soles of the feet 
(D) the palm of the hand (E). F) 
Lesions, including oral lesions 
and mouth ulcers, in a 3-month-
old male baby.
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immunocompromising conditions contributed to 
death, which would have worsened the clinical dis-
ease manifestations, as highlighted by others (44). In 
addition, fatal cases associated with clade I potential-
ly escaped the national surveillance system in Camer-
oon, which is new and still being improved.

We found that both primary zoonotic and sec-
ondary human-to-human MPXV transmission occurs 
in Cameroon, including nosocomial transmission af-
fecting health workers. Our results are consistent with 
reports describing secondary transmission chains, in-

cluding intrafamilial transmission and occupational 
transmission through trade, transportation, hunting, 
and healthcare in endemic countries (24,43,45,46). 
This study highlights a common MPXV acquisition 
pathway in endemic countries, interspecies transmis-
sion, and wild animals are presumed reservoirs of the 
virus (31,32,47). Distinguishing between primary and 
secondary transmission is difficult because both could 
occur. Additional data and further investigations are 
required to clearly understand the underlying drivers 
of MPXV transmission in Cameroon. 
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Figure 3. Geographic distribution 
of confirmed mpox cases and 
clades in a study of concurrent 
clade I and clade II monkeypox 
virus circulation, Cameroon, 
1979–2022. A total of 137 
suspected mpox cases were 
reported in the framework of the 
mpox surveillance system, among 
which 37 were PCR-confirmed 
for monkeypox virus infection. 
Clade I (12 cases) and clade 
II (18 cases) viral strains were 
identified circulating in the country. 
We noted a clear geographic 
segregation between the Centre, 
South, and East regions where 
only clade I (yellow dots) was 
reported, and the Northwest, 
and Southwest regions where 
only clade II (orange dots) was 
found. The size of each dot is 
proportional to the number of 
confirmed cases on the map. 
The map was designed by using 
Quantum GIS version 3.30.1 
(QGIS, https://qgis.org). CAR, 
Central African Republic.
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A limitation of this study is our inability to per-
form more precise analyses to determine the charac-
teristics independently describing the mpox epidemi-
ology in Cameroon. Because the current surveillance 
system is still handwritten and forms are often in-
completely filled, data are missing, as is common in 
paper-based data collection systems (48).

Since 1979, MPXV infections in Cameroon have 
occurred in 6 of the 10 administrative divisions of 
the country: Centre, South, East, Littoral, North-
west, and Southwest. All those administrative divi-
sions are in the southern part of the country, which 
is a forested area encompassed by the lower mon-

tane forest of Guinea and the tropical rainforest of 
the Congo Basin, a favorable ecosystem for potential 
wildlife hosts. In contrast, northern Cameroon, a dry 
Sahelian and savannah zone, seems unlikely to be 
conducive to MPXV transmission because no cases 
have been confirmed in this region. That ecosystem 
is probably not suitable for MPXV reservoirs due to 
the dry environment. In most endemic countries, in-
cluding Sierra Leone, Nigeria, Liberia, Central Af-
rican Republic, and the Democratic Republic of the 
Congo, mpox cases mainly have been reported from 
forested areas (24,25,46). Most MPXV-confirmed cas-
es in our study originated from the Centre (34 [38%]) 
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Figure 4. Maximum-likelihood phylogenetic tree of sequences in a study of concurrent clade I and clade II monkeypox virus circulation, 
Cameroon, 1979–2022. The tree is based on the Hasegawa-Kishino-Yano model inferred from a 942-bp fragment of the ATI gene, 
including 8 virus sequences from Cameroon generated in this work (bold text) and 55 reference sequences from GenBank. The tree with 
the highest log likelihood (−1,340.35) is shown. To test the robustness of the tree topology, 1,000 bootstrap replicates were performed. 
For a better display of the tree, the size of the 2 main midpoint rooted branches (represented in gray) that support the differentiation of 
the 2 monkeypox virus clades have been divided by half. Mpox strains from Cameroon are closely related to clades I and II, especially 
clade IIb for which a highlighted link to the ongoing global mpox epidemic is noted. Scale bar indicates number of substitutions per site. 
CAR, Central African Republic; DRC, Democratic Republic of the Congo; USA, United States.
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and Southwest (31 [25%]) regions, which are the 2 
most affected areas in the country. The Northwest 
region was the third (18 [75%] cases) most affected 
region. The Northwest and Southwest regions have 
been most seriously affected by civil unrest since 
2017. That civil unrest has increased the number of 
IDPs in the country, and IDPs often move to differ-
ent regions and neighboring countries. Furthermore, 
that situation has greatly increased human contact 
with wildlife as IDPs seek refuge in makeshift camps 
in the forest. By living in overlapping natural habi-
tats of wild animals and potential MPXV reservoirs, 
populations of the Southwest and Northwest re-
gions are under increased threat of zoonotic MPXV 
acquisition. Indeed, in Africa, civil unrest often leads 
to increases in mpox cases, and risk for any zoonotic 
disease is common (4,49). In several endemic coun-
tries, mpox outbreaks in the context of armed con-
flicts or massive population movements are a typical 
epidemiologic feature, and those conditions are usu-
ally associated with inefficient disease surveillance 
and control (4,49).

Genotypic and phylogenetic analyses revealed 
that both clade I and clade II are concurrently cir-
culating in Cameroon and that a clear geographic 
segregation appears between the 2 clades. Circula-
tion of both MPXV clades in Cameroon was pre-
viously reported in 2 published MPXV sequences 
from Cameroon (6,29). However, this study builds 
on those findings and provides more samples to 
further confirm that clades I and II concurrently 
circulate in a single country, a unique feature in 
MPXV epidemiology. 

The geographic segregation of the clades is 
more perceptible in clade II case 21V-04877 in the 
Centre region. An epidemiologic investigation re-
vealed that the case-patient was an IDP originating 
from the Northwest region, where MPXV clade II is 
endemic. The geographic segregation observed be-
tween MPXV strains circulating in Cameroon can 
be attributed to the natural barriers that potential 
animal reservoirs might not be able to cross between 
the Centre, East, and South regions, covered by 
the Congo Basin tropical forest, and the Northwest 
and Southwest regions, covered by lower montane 
moist forest of Guinea (38,40). Indeed, the Sanaga 
River, which is the largest river in the country, and 
the Cameroon highlands region sharply separate 
the 2 geographic areas into tropical moist forest 
ecoregions. The Cross-Sanaga-Bioko coastal forests 
lie to the north between the Sanaga River and the 
Cross River of Nigeria, and the Atlantic Equatorial 
coastal forests extends south of the river through  

southwestern Cameroon and other neighboring 
countries of central Africa (38,39). Alternatively, the 
2 ecologic environments potentially host different 
reservoirs. Several studies aimed to identify pre-
sumed MPXV reservoirs (31,33,47), but none have 
emphasized the potential of 2 distinct reservoirs 
that could be specific to a given ecosystem. Further-
more, MPXV circulation in humans in Cameroon 
after decades of absence might have resulted from 
movements of human populations, reservoir hosts, 
or both from endemic reservoirs in neighboring 
countries as armed conflicts intensified cross-border 
movements since 2017. That hypothesis is supported 
by the clustering of newly sequenced MPXV strains 
with counterparts originating from neighboring 
countries that have no physical barrier with the east-
ern and western parts of Cameroon but have long 
terrestrial borders.

In summary, this study provides detailed in-
sight into the mpox epidemic in Cameroon during a 
44-year period. The epidemiology of mpox in Cam-
eroon involves both primary and secondary trans-
mission. Segregated clade I and II virus strains con-
currently circulate, suggesting potential existence of 
distinct viral reservoirs and cross-border circulation 
of MPXV. This study can inform the design, optimi-
zation, and evaluation of public health interventions 
for monitoring and controlling mpox in Cameroon 
and other countries in Africa with similar epidemio-
logic settings.
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Since last century, highly pathogenic avian influenza 
(HPAI) viruses have caused diverse waves of infec-

tion (1). However, the ongoing panzootic event (2020–
2023) caused by HPAI A(H5N1) virus could become 
one of the most important in terms of economic losses, 
geographic areas affected, and numbers of species and 
individual animals infected (1–4). This pathogen ap-
pears to be emerging in several regions of the world 

(e.g., South America); it has caused death in domestic 
and wild birds but also in mammals (2,5,6). This trend 
is of great concern because it may indicate a change in 
the dynamics of this pathogen (i.e., an increase in their 
range of hosts and the severity of the disease) (3).

H5N1 has affected several mammal species since 
2003 (6,7), thus raising concern because H5N1 mam-
malian adaptation could represent a risk not only for 
diverse wild mammals but also for human health (8–
10). Unfortunately, information about this topic, es-
pecially related to the current panzootic (2020–2023), 
is disperse and available often only in gray literature 
(e.g., databases and official government websites). 
This fact complicates access and evaluation for many 
stakeholders working on the front lines (e.g., wildlife 
managers, conservationists, and public health author-
ities at regional and local levels).

For this article, we compiled and analyzed in-
formation from scientific literature about mammal 
species, including humans, naturally affected by the 
current panzootic event and compared those findings 
with the outcomes of previous waves of H5N1 infec-
tion. We focus particularly on the species infected, 
their habitat, phylogeny, and trophic level, and the 
sources of infection, virus mutations, clinical signs, 
and necropsy findings associated with this virus. 
We also address potential risks for biodiversity and  
human health.

Methods
We compiled scientific information on mammals in-
fected by H5N1 virus through October 2023. We con-
sidered only scientific information on mammal spe-
cies infected naturally (i.e., experimental studies were 
not included). We performed 2 systematic searches 
in Scopus and Google Scholar, first using the terms 
“H5N1 AND mammal”; this search was divided into 2 
periods (1996–2019 and 2020–2023) (Appendix Figure 
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We reviewed information about mammals naturally in-
fected by highly pathogenic avian influenza A virus 
subtype H5N1 during 2 periods: the current panzootic 
(2020–2023) and previous waves of infection (2003–
2019). In the current panzootic, 26 countries have re-
ported >48 mammal species infected by H5N1 virus; 
in some cases, the virus has affected thousands of in-
dividual animals. The geographic area and the number 
of species affected by the current event are consider-
ably larger than in previous waves of infection. The most 
plausible source of mammal infection in both periods ap-
pears to be close contact with infected birds, including 
their ingestion. Some studies, especially in the current 
panzootic, suggest that mammal-to-mammal transmis-
sion might be responsible for some infections; some mu-
tations found could help this avian pathogen replicate in 
mammals. H5N1 virus may be changing and adapting to 
infect mammals. Continuous surveillance is essential to 
mitigate the risk for a global pandemic.
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1, 2, https://wwwnc.cdc.gov/EID/article/30/3/23-
1098-App1.pdf). We then performed an additional 
search with no time restriction using the following 
key terms: “H5N1 OR HPAI OR Highly Pathogenic 
Avian Influenza AND mammal OR unusual host.” 
This additional search contributed no new articles on 
the study topic (Appendix Figure 3). We also adopted 
a snowball approach, examining all the references in 
the articles we found in our searches. We included 
review articles only if they contributed new informa-
tion about mammal species infected naturally with 
H5N1; we excluded articles based on serologic sur-
veys because of the difficulty in determining when 
infection occurred, which can introduce uncertainty 
into the diagnosis (11).

To obtain additional information on the current 
panzootic event, we also searched the following offi-
cial databases: World Organisation for Animal Health 
(6), the US Department of Agriculture’s Animal and 
Plant Health Service (12), and the United Kingdom’s 
Animal and Plant Health Agency (13). To obtain in-
formation about humans affected by this pathogen 
we used information provided by the World Health 
Organization (14). We constructed a map with the 
countries with reports of mammal infections (Figure 
1) and the phylogeny of mammal species affected by 
H5N1 (Figures 2, 3) by using iTOL version 5, follow-
ing Letunic and Bork (15), from DNA sequence data 
available in Upham et al. (16). We retrieved the con-
servation statuses of infected mammals from Inter-
national Union for Conservation of Nature Red List 
of Threatened Species (17) and information on their 
diets from that database and MammalBase (18).

Results and Discussion

Scientific Information Available
We found 59 scientific articles on mammals infected 
naturally by H5N1 virus, 23 from previous waves of 
infection (up to 2019) and 36 from the current panzo-
otic event (Appendix Figure 1, 2). The articles report-
ing mammals infected naturally in previous waves 
were published during 2004–2018, whereas those ad-
dressing the current panzootic were published dur-
ing 2021–2023. The current panzootic has thus gen-
erated more articles in 3 years than all the previous 
waves of infection (published over a 15-year period). 
This fact suggests increased general interest in emerg-
ing pathogens affecting biodiversity and mammals 
(wild and farmed) and also that the current panzootic 
event is causing greater concern and having a greater 
effect than previous ones (considering the geographic 
regions and mammal species affected) (4).

Geographic Localization of Information and  
Mammal Species Affected
During previous waves of infection, 10 countries re-
ported mammals (not including humans) naturally 
infected by H5N1 (5 countries in Asia, 3 in Europe, 
and 2 in Africa) (Figure 1, panel A; Appendix Table). 
In the current event, 26 countries have reported infor-
mation on mammals (not including humans) infected 
by this virus; most information is from Europe (17 
countries), followed by South America (5 countries), 
North America (2 countries), and Asia (2 countries) 
(Figure 1, panel B; Appendix Table). To the best of 
our knowledge, for the current outbreak, no informa-
tion is available on mammals from other parts of the 
world, which can probably be explained by a lack of 
testing or reporting of cases. Our review suggests that 
H5N1 virus is expanding its geographic range to new 
continents such as North and South America (Figure 
1). This fact is of concern because when an emerging 
pathogen reaches naive populations, the consequenc-
es for biodiversity can be catastrophic, especially for 
threatened species (19).

We found that previous waves of infection af-
fected several mammals around the world (7,20); for 
example, tigers (Panthera tigris), leopards (Panthera 
pardus), domestic cats (Felis catus), domestic dogs 
(Canis lupus familiaris), Owston’s palm civet (Chroto-
gale owstoni), stone martens (Martes foina), plateau pi-
kas (Ochotona curzoniae), minks (Neovison vison), and 
raccoon dogs (Nyctereutes procyonoides) (Appendix 
Table). All the mammal species affected were terres-
trial or semiaquatic species (Figure 2, panel A). Most 
mammals infected during previous waves (75%; n = 
9) belong to the order Carnivora, whereas the remain-
der correspond to the Lagomorpha, Artiodactyla, and 
Perissodactyla orders (Figure 2, panel B). Infected 
mammal species included top predators (e.g., tigers 
and leopards) and some mesopredators (e.g., minks) 
(Appendix Table). Most species infected in previous 
waves were carnivores (n = 6) and omnivores (n = 4), 
followed by herbivores (n = 2) (Figure 2, panel C; Ap-
pendix Table).

So far, in the current panzootic, >48 mammal 
species from disparate regions of the world have 
been reported as naturally infected by H5N1 (Ap-
pendix Table). Most of those species (n = 35) are ter-
restrial or semiaquatic mammals (Figure 3, panel A; 
Appendix Table), but 13 species of marine mammals 
also were affected, resulting in massive deaths (up 
to thousands of individual animals) in geographic 
regions such as Peru, Chile, and Argentina (Figure 
3, panel A; Appendix Table). Of the total number of 
mammals infected, 81% (n = 39) belong to the order 
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Carnivora, and the remainder correspond to Didel-
phimorphia, Rodentia, and Cetartiodactyla (Figure 
3, panel B). Infected mammal species include top 
predators (e.g., mountain lion [Puma concolor]) and 
several mesopredators (e.g., red fox [Vulpes vulpes]) 
(Appendix Table). Most mammal species infected 
are carnivores (n = 34), followed by omnivores (n = 
13) and herbivores (n = 1); some of those species (n 
= 13) also are considered facultative scavengers (i.e., 
they include in their diet a considerable quantity 
of carrion; in our case to be a facultative scavenger  

carrion should be named in the diet) (Figure 3, panel 
C; Appendix Table).

The species infected in the 2 events show simi-
larities. Most species belong to the order Carnivora 
and are top or mesopredators with a carnivorous diet; 
some species also are facultative scavengers. How-
ever, in the current panzootic event, the diverse ma-
rine mammals affected have suffered massive deaths 
(e.g., American sea lion [Otaria flavescens]) (Appendix 
Table). Marine mammals have been affected by other 
influenza viruses such as H10N7 (21), but the species 
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Figure 1. Geographic location of mammal species affected by highly pathogenic influenza virus A(H5N1) in previous waves of infection, 
2003–2019 (A), and in the current panzootic, 2020–2023 (B).
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affected and the number of dead individual animals 
attributable to the current event is of great concern 
(22,23); for example, the proportion of American sea 
lions that died in Peru represents 5% of their popula-
tion there (22).

The current panzootic is ongoing, and the num-
ber of species being infected naturally is increasing 
(40 new mammal species have been reported as in-
fected by this pathogen during the current panzo-
otic), so the effect on mammal species may continue 
to worsen with time. This effect could just be at-
tributable to the current high H5N1 infection rates 
throughout the world, which means the virus is 
reaching more areas and mammal species living in 
these places (i.e., high environmental circulation of 
this pathogen) (8). However, the dynamics of the vi-
rus may also be changing (3), in which case its infec-
tivity in unusual species such as mammals is prob-
ably increasing (8). During the final review process 
of this article, 2 additional species were reported to 
be infected by this virus in the United States: the Ab-
ert’s squirrel (Sciurus aberti) and the polar bear (Ur-
sus maritimus) (newly infected species are not shown 
in figures or the Appendix Table) (6).

Source of Infection
Although the source of infection in mammals is 
often unknown, most scientific information avail-
able during previous and the current H5N1 event 
suggests that the most plausible source of infection 
is close contact with infected birds, including their 
ingestion, which may occur through predation of 
sick individual animals or scavenging on carcasses. 
For instance, in the year 2004, a total of 147 tigers 
and 2 leopards housed in zoos in Thailand became 
infected and died after consuming infected chicken 
carcasses (24,25). In China, this infection source 
was also associated with the death of a tiger in 2013 
(26) and a lion in 2016 (27). In the current panzootic, 
the first case of H5N1 infection in minks in Spain 
was probably caused by contact with infected birds 
(perhaps gulls) (9). Ingestion of infected bird car-
casses was probably the route of infection of red 
foxes in the Netherlands, Finland, and Japan dur-
ing 2020–2022 (28–31), American sea lions in Peru 
in 2023 (22), diverse mesocarnivores in Canada 
during 2021–2022 (32) and otters (Lutra lutra) and 
a lynx (Lynx lynx) in Finland in 2021–2022 (31). Of 
concern, studies in infected tigers, farmed minks, 
and social species such as American sea lions, raise 
an alarm that mammal-to-mammal transmission 
may have occurred (9,22,24,33), but further re-
search is needed to confirm this possibility.

If mammal-to-mammal transmission occurs dur-
ing the current H5N1 panzootic, such transmission 
could imply that the virus mutated to enable virus 
replication in mammal tissues (9). Some researchers 
have reported mutations compatible with adapta-
tion to mammal replication (9,25,33,34), which is con-
cerning and requires attention. However, evaluating 
whether those mutations happen in wild birds before 
mammal infections or arise de novo in mammals after 
infection is important.
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Figure 2. Characteristics of mammal species affected worldwide 
by highly pathogenic influenza virus A (H5N1) in previous waves 
of infection (2003–2019). A) Habitat of mammal species affected 
by H5N1. B) Phylogeny of mammal species affected (tree 
constructed using iTOL version 5 following Letunic and Bork 
[15], from DNA sequence data available in Upham et al. [16]). 
C) Trophic level (facultative scavenger, carnivore, omnivore, or 
herbivore) of mammalian species affected worldwide by H5N1.
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Mutations Found
Through sequencing of the H5N1 viruses infecting 
mammals, some relevant mutations such as E627K 
in polymerase basic protein 2 (PB2) (PB2-E627K) and 
D701N in polymerase basic protein 2 (PB2) (PB2-
D701N) have been found in previous waves and 
in the current panzootic (Appendix Table). Those 
mutations are commonly associated with virulence 
and efficiency in the replication of this pathogen in 

mammals (31,33,35). For instance, during 2004–2005, 
in Thailand, the isolated H5N1 viruses that infected 
tigers, a domestic cat, a domestic dog, and a leop-
ard contained the PB2-E627K mutation (25,35,36). 
In the current panzootic, red foxes from the Neth-
erlands also showed the mammalian adaptation of 
PB2-E627K (28). In viruses collected from red foxes, 
an otter, and a lynx in Finland in 2021–2022, the PB2-
E627K and PB2-D701N mutations were identified 
(the latter mutation was reported in 1 red fox and 1 
lynx in Finland) (31). Similarly, in the current pan-
zootic, red foxes, otters, and polecats (Mustela puto-
rius) in the Netherlands, and red foxes in Canada, 
and the United States had the PB2-E627K mutation 
(8,32,37). The PB2-E627K and PB2-D701N mutations 
were also detected in harbor seals (Phoca vitulina) in 
the United States (34), and the latter mutation was 
found in South American sea lions in Peru (33), and 
in a red fox in Canada (32). In both previous and 
current events, other mutations meriting further re-
search were also found in diverse mammal species, 
including terrestrial, semiaquatic, and marine mam-
mals (Appendix Table).

Mutations that facilitate replication of the virus in 
mammal hosts (e.g., enhancing polymerase activity in 
mammal cells), such as PB2-E627K and PB2-D701N, 
could be of concern (8,31,33). Potential mutations 
must be continuously scrutinized to detect whether 
the H5N1 virus is adapting to mammal-to-mammal 
transmission. This approach is important for wildlife 
conservation because if such transmission occurs, the 
consequences for threatened mammal species could 
be severe (e.g., threatened South American sea lion 
deaths in Peru [22]). In addition, mutations must be 
monitored for changes that may favor transmission to 
and between humans, which would increase the risk 
for a pandemic.

Clinical Signs of H5N1 in Mammals
The most common clinical signs reported in infected 
mammals, both in previous waves and the current 
H5N1 panzootic, are neurologic and respiratory. For 
instance, in 2005, an infected Owston’s civet in Viet-
nam showed loss of appetite and neurologic signs 
such as convulsions and paralysis; the same clinical 
signs were reported in a stone marten in Germany in 
2006 (38,39). Similarly, hundreds of infected tigers in 
a zoo in Thailand showed respiratory and neurologic 
signs before they died (24). In the current panzootic 
event, infected minks from Spain manifested loss of 
appetite, hyper salivation, depression, bloody snout, 
and neurologic signs such as ataxia and tremors (9). 
American sea lions in Peru and harbor seals in the 
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Figure 3. Characteristics of mammal species affected worldwide 
by highly pathogenic influenza virus A (H5N1) the current 
panzootic (2020–2023). A) Habitat of mammal species affected 
by H5N1. B) Phylogeny of mammal species affected (tree 
constructed using iTOL version 5 following Letunic and Bork 
[15], from DNA sequence data available in Upham et al. [16]). 
C) Trophic level (facultative scavenger, carnivore, omnivore, 
or herbivore) of mammal species affected worldwide by H5N1. 
Some of the omnivorous and carnivorous mammals included in 
the pyramid (n = 13) also consume carrion; thus, they are also 
considered to be facultative scavengers and are incorporated in 
the upper part of the pyramid.
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United States showed respiratory signs (dyspnea 
and whitish secretions in nares) and neurologic signs 
(tremors and convulsions) (22,34). Red foxes, an ot-
ter, a polecat, and a badger (Meles meles) in the Neth-
erlands had neurologic signs such as convulsions 
and head shaking (8,30). In Finland, an infected otter 
was also reported to have a set of neurologic signs 
(31). Finally, in the United States and Canada, sev-
eral mammals manifested neurologic and respiratory 
signs (32,37). Those findings suggest that H5N1 virus 
has neurotropism in mammals, as reported in birds 
(6,28), causing severe disease and pathologic lesions 
(e.g., encephalitis); brain samples should be included 
in wildlife surveillance programs for reliable detec-
tion of the H5N1 virus in mammals (8).

Although neurologic and respiratory signs are 
commonly reported in mammals infected with H5N1, 
some species and individual animals show subclinical 
disease. For instance, infected pigs (Sus scrofa domesti-
cus) from Indonesia, Nigeria, and China had no signs 
of influenza but tested positive for H5N1 (40–42). 
Similarly, in Austria, infected domestic cats display 
asymptomatic infections (43). Subclinical infections 
are concerning because they are not easily detected; 
infected individual animals may be transmitting the 
virus to other species and even humans, representing 
a risk to the ecosystem and human health (40,41).

Necropsy Findings
In previous waves of infection and the current H5N1 
panzootic, the most frequently reported anatomo-
pathologic lesions in infected mammals were pneu-
monia and encephalitis. Those kinds of lesions (e.g., 
congestion of brain, meningoencephalitis, hemor-
rhagic lungs, and pleural effusion) were reported in 
dead tigers in Thailand and China during 2004–2014 
(24,26,44), in a lion in China in 2016 (27), and in cats 
and dogs infected naturally in Thailand in 2004 
(45,46). In the current panzootic, for instance, red fox-
es from the Netherlands had collapsed lungs with a 
marbled red aspect; histopathologic analyses showed 
a subacute to chronic purulent granulomatous bron-
cho-interstitial pneumonia and nonsuppurative en-
cephalitis with perivascular cuffing (28). Red foxes, 
polecats, otters, and a badger in the Netherlands also 
showed nonsuppurative meningitis, encephalitis, or 
meningoencephalitis, all with differences in severity 
(8). American sea lions in Peru had congestive brains 
compatible with encephalitis (22). A porpoise (Phocoe-
na phocoena) in Sweden manifested meningoencepha-
litis (47). Similar findings, meningoencephalitis and 
pneumonia, were also found in mammals in Finland, 
the United States, and Canada (31,32,37).

Those findings suggest that respiratory and neu-
rologic lesions are the most common pathologies of 
necropsied mammals infected with H5N1 in both 
previous waves of infection and the current panzo-
otic. The lesions largely explain the neurologic and re-
spiratory signs observed in mammals affected by this 
virus. Complete necropsies of infected mammals may 
help determine whether those anatomopathologic 
findings are frequent and pathognomonic for this dis-
ease in every species and most individual animals, as 
preliminary results suggest.

Risks for Biodiversity
The current panzootic is affecting a larger number 
of species around the world than previous waves of 
H5N1 infection, and some are of conservation con-
cern. Previous waves affected 2 endangered and 2 
vulnerable species (Appendix Table). The current 
panzootic has so far affected 4 near threatened, 4 en-
dangered, 3 vulnerable, and 1 critically endangered 
species (Appendix Table); this emerging pathogen 
may affect species of conservation concern, exacerbat-
ing their situation.

In general, most mortality events associated with 
the current panzootic appear to affect few individual 
animals and in only certain areas; thus far, large pop-
ulations have not been affected in the way wild birds 
have been affected (4,6). However, this virus is sus-
pected of producing massive deaths in some marine 
mammals; for example, >20,000 South American sea 
lions were reported to have died suddenly, and many 
individual animals tested positive for H5N1 (6,22,23). 
This fact raises concern as to the potential effect of this 
virus on the demography of some threatened mam-
mal populations. This emerging pathogen represents 
a new species invading and impacting new environ-
ments and species and could therefore constitute a 
new threat for diverse species currently threatened by 
human action (e.g., land use change, contamination, 
and habitat loss) (19,48).

Potential Risks for Human Health
During 2003–2023, a total of 878 humans tested posi-
tive for the H5N1 virus, and 458 deaths were report-
ed, indicating a lethality of ≈52% (14). During 2003–
2019, most human cases came from Asia and Africa, 
particularly from China (n = 53), Egypt (n = 359), and 
Indonesia (n = 200). From 2020 through July 2023, 
human cases of H5N1 infection occurred in diverse 
countries, such as Laos (1 case), India (1 case), United 
Kingdom (4 cases), China (2 cases), the United States 
(1 case), Vietnam (1 case), Spain (2 cases), Ecuador 
(1 case), Chile (1 case), and Cambodia (2 cases) (14). 
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Those recent cases resulted in >3 deaths (14). Of note, 
this zoonotic virus has produced human cases in new 
geographic areas, such as South America.

The spillover to humans has been associated with 
close contact between humans and infected animals, 
particularly poultry; this kind of contact is relatively 
common in some geographic regions (even close con-
tact between dead mammals and humans, as in Peru 
[22]). So far, no evidence indicates human-to-human 
transmission, and the risk for a pandemic event still 
seems low (8). However, one of the most severe influ-
enza viruses to have affected humans (i.e., Spanish in-
fluenza [1918–1919]) developed from an avian influen-
za virus that adapted to humans (49), a fact that should 
be considered when assessing the spillover risk.

Mutations in the virus found in diverse mammal 
species, especially in the current panzootic, are of 
great concern. For instance, the T271A mutation re-
ported in minks in Spain is also present in the H1N1 
that produced a pandemic in 2009 (9). Similarly, the 
PB2-E627K mutation found in this virus in diverse 
geographic areas could indicate an adaptation for rep-
lication in mammals (28,31). Moreover, some infected 
species, such as minks, may act as a mixing vessel for 
interspecies transmission between birds, mammals, 
and humans (9). Mutations and infections with H5N1 
in potential mixing-vessel species (e.g., minks and 
wild and domestic pigs) should be followed closely 
because of the potential risk to human health.

Final Considerations
Given the magnitude of the current H5N1 panzootic, 
continuous surveillance is necessary to identify any 
increase in risk to biodiversity and human health. It 
is therefore essential that all affected countries share 
all their available information (e.g., genomic data 
of the H5N1 virus, species, and number of individ-
ual animals affected). We urge that all findings be 
shared quickly. International collaboration must be 
intensified to obtain rapid results; some less-devel-
oped regions have technologic and logistic barriers 
that hinder the production and analysis of informa-
tion on the impact of this virus, and they may need 
help. There is a need for strong collaborative work 
between countries and institutions in preparation 
for any spillover that may lead to a mammalian pan-
zootic or human pandemic.

It is fundamental that we rethink the interface be-
tween humans, domestic animals, and wild animals 
to prevent the emergence of dangerous pathogens 
that affect biodiversity and human health (48). Gov-
ernments must assume responsibility for protecting 
biodiversity and human health from diseases caused 

by human activities, particularly diseases originating 
from intensive production (50), such as this H5N1 avi-
an influenza virus. If we hope to conserve biodiversity 
and protect human health, we must change the way 
we produce our food (poultry farming, in this specific 
case) and how we interact with and affect wildlife.
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Reports of acute hepatitis caused by rat hep-
atitis E virus (HEV) raise concerns regarding 
the potential risk for rat HEV transmission to 
people and hepatitis E as an emerging infec-
tious disease worldwide. During 2018–2021, 
researchers tested liver samples from 372 
Norway rats from southern Ontario, Canada 
to investigate presence of hepatitis E virus in-
fection. Overall, 21 (5.6%) rats tested positive 
for the virus.
In this EID podcast, Dr. Sarah Robinson, a 
postdoctoral researcher at the University of 
Guelph, discusses hepatitis E virus in Norway 
rats in Ontario, Canada.
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Mpox is an emerging viral disease characterized 
by a prodromal illness followed by vesiculo-

pustular rash (1). Since monkeypox virus (MPXV) 
was first isolated in 1970 from a child in the Demo-
cratic Republic of the Congo, cases of mpox have been 
documented across 15 countries, primarily Africa (1). 
Sporadic cases outside of those countries were usu-
ally epidemiologically linked to international travel 
or animal importation (2). However, during 2022, a 
global outbreak of mpox began that was driven by 
human-to-human transmission (3,4); ≈87,000 cases 
from 110 countries have been reported to the World 
Health Organization since January 2022 through May 

2023 (5). Before 2022, no mpox case had been reported 
in Virginia, USA; however, by the end of December 
2022, Virginia reported 568 cases and was among the 
top 15 US states for mpox case burden (6).

In Virginia, mpox is reportable as an Unusual Oc-
currence of Disease of Public Health Concern. Local 
public health departments have 24 hours from case 
notification to begin an investigation, initiate contact 
tracing to identify exposed persons, and offer medi-
cal countermeasures to halt further transmission. The 
2-dose vaccine series (JYNNEOS; Bavarian Nordic, 
https://www.bavarian-nordic.com) was offered for 
persons at increased risk for MPXV exposure or af-
ter a known or presumed exposure to MPXV (7). The 
Centers for Disease Control and Prevention (CDC) 
recommends that vaccine be given as soon as possi-
ble, ideally within 4 days after exposure; administra-
tion 4–14 days after exposure may still provide some 
protection against mpox and should still be offered 
(7). The second dose should be administered 28–35 
days after the first dose, although completing the se-
ries at any time thereafter is recommended (7).

The changing epidemiology of MPXV transmission 
from primarily zoonotic to primarily human-to-human 
during an outbreak of unprecedented scale provided a 
unique public health challenge. We describe how the 
Virginia Department of Health (VDH; Richmond, VA, 
USA) adapted an existing data collection tool for tracing 
contacts and monitoring symptoms of persons affected 
by an emerging disease and how those data were used 
to assess contact characteristics, MPXV exposures, vac-
cine uptake, and timeliness of postexposure vaccination.

Our study received ethics approval from the 
Virginia Department of Health Institutional Review 
Board (study #50284). The study was also reviewed 
by CDC and conducted consistent with federal law 
and CDC policy (*45 C.F.R. part 46, 21 C.F.R. part 56; 
42 U.S.C. Sect. 241(d); 5 U.S.C. Sect. 552a; 44 U.S.C. 
Sect. 3501 et seq.).

Monitoring and Characteristics  
of Mpox Contacts, Virginia, USA, 

May–November 2022
Eleanor N. Field, Elizabeth McCarty, Dawn Saady, Brandy Darby

RESEARCH

During 2022, a global outbreak of mpox resulted pri-
marily from human-to-human contact. The Virginia De-
partment of Health (Richmond, VA, USA) implemented 
a contact tracing and symptom monitoring system for 
residents exposed to monkeypox virus, assessed their 
risk for infection, and offered interventions as needed. 
Among 991 contacts identified during May 1–November 
1, 2022, import records were complete for 943 (95.2%), 
but 99 (10.0%) were not available for follow-up during 
symptom monitoring. Mpox developed in 28 (2.8%) per-
sons; none were healthcare workers exposed at work 
(n = 275). Exposure risk category and likelihood of de-
veloping mpox were strongly associated. A total of 333 
persons received >1 dose of JYENNOS (Bavarian Nor-
dic, https://www.bavarian-nordic.com) vaccine, most (n 
= 295) administered after virus exposure. Median time 
from exposure to vaccination was 8 days. Those data 
tools provided crucial real-time information for public 
health responses and can be used as a framework for 
other emerging diseases.
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Materials and Methods

Cohort Design
The objective of VDH mpox contact tracing was 
to identify close contacts, advise them of the virus 
exposure, and offer vaccination to prevent illness 
or reduce disease severity to those eligible. Symp-
tom monitoring was implemented to expedite early 
laboratory testing and case identification to reduce 
further transmission. To be included in the study, a 
person needed to have either self-reported an MPXV 
exposure or have been notified by VDH of a recent 
exposure. Persons who were not residents of Vir-
ginia were not eligible for participation. VDH may 
have been notified of an mpox case by an in-state 
healthcare provider, clinic, or laboratory; by another 
state; or by CDC.

We recorded persons with confirmed and prob-
able mpox identified during the symptom monitor-
ing period as persons in whom mpox developed. 
We defined a confirmed mpox case as positive de-
tection of MPXV through either molecular testing or 
genomic sequencing. We defined a probable case as 
detection of orthopoxvirus by molecular testing and 
no laboratory evidence of another nonvariola ortho-
poxvirus, detection of orthopoxvirus by immunohis-
tochemistry or genomic sequencing, or detection of 
orthopoxvirus IgM in a person with no recent history  
of vaccination (8).

Mpox Contact Tracing and Symptom  
Monitoring Data Collection
Local health department staff used REDCap (Re-
search Electronic Data Capture, https://www.
project-redcap.org) to collect information on mpox 
close contacts and symptom monitoring during case 
and contact interviews. Some hospitals monitored 
their own employees and provided information 
to local health departments about their healthcare 
workers (HCWs) exposed at work. Information was 
entered into a contact import form that included 
patient demographics, MPXV exposure (e.g., date 
of last exposure, exposure risk category, location 
description and setting), mpox vaccination status, 
HCW status, immunosuppression status, and pub-
lic health interviewer details. We also linked close 
contact to a daily mpox monitoring form, which 
collected information about mpox symptoms (e.g., 
temperature, rash, chills, swollen lymph nodes), 
medications taken, and final disposition. The daily 
mpox monitoring form was completed and submit-
ted by the contact over text message, email, or by 
phone with a local health department staff member.

The REDCap project also included a case report 
form, which was adapted from CDC recommenda-
tions (9). The form consisted of 248 fields asking about 
the interaction(s) that may have been the source(s) of 
infection, mpox vaccination status, mpox hospitaliza-
tion, mpox symptoms, date of illness onset, residence, 
demographics (including sexual orientation and gen-
der identity), recent trips and contacts with whom the 
person had interacted (and the nature of the interac-
tions), laboratory information about the diagnosis, 
and interview details.

Contact information obtained from case inter-
views was recorded in the database, but participation 
in daily mpox symptom monitoring and exposure or 
case interviews with the local health department was 
voluntary. Symptom monitoring lasted for 21 days 
from a person’s last reported exposure.

Cohort Analyses
We conducted a retrospective cohort study for persons 
enrolled in the VDH mpox close contact monitoring 
cohort during May 1–November 1, 2022 (Figure 1). We 
excluded data for 16 persons who had not completed 
symptom monitoring within the study time frame and 
for 1 person for whom duplicate, conflicting informa-
tion was recorded. For all analyses, we used R Statisti-
cal Software version 4.2.2 (The R Foundation for Statis-
tical Computing, https://www.r-project.org).

Mpox Exposure Analysis
We extracted information regarding demographics, 
MPXV exposure details, assigned exposure risk cate-
gory (10), monitoring participation, and outcome (dis-
ease did vs. did not develop) of persons included in the 
monitoring cohort. Exposure settings were mutually 
exclusive because of limitations in the structure of data 
collection forms. Exposure risk categories (high, inter-
mediate, lower, and none) characterizing personal risk 
from the nature of the exposure using criteria defined 
by CDC (10) were assigned by local health department 
personnel in the contact import form.

We used descriptive statistics to describe select 
demographic and exposure data for the full cohort, 
for persons within the cohort in whom mpox devel-
oped, and for HCWs exposed at work (Figure 1). Cal-
culated percentages exclude missing values. We used 
χ2 analysis to evaluate the association between expo-
sure risk category (excluding the none category) and 
development of mpox.

Mpox Vaccination Analysis
Mpox vaccine administration is mandatorily report-
ed to the Virginia Immunization Information System 
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(https://viis.vdh.virginia.gov); we used this system 
to determine which persons received in-state mpox 
vaccine(s) and the date(s) of administration. Match-
ing was completed by using exact date of birth, postal 
(ZIP) code, and the first 3 letters of first and last names.

To assess vaccine uptake, we described how 
many and what percentage of persons within the co-
hort received >1 dose of an mpox vaccine. We used 
those descriptive statistics to measure completion of 
the 2-dose series. We also specifically assessed vac-
cine uptake for persons within the cohort in whom 
mpox developed. Last, to determine if there were 
differences across exposure risk categories, we mea-
sured vaccine uptake by exposure risk category.

We measured vaccination timeliness as time in 
days from reported MPXV exposure to first dose of 
an mpox vaccine for the full cohort and for persons in 
whom mpox developed. We did not analyze preexpo-
sure vaccination timeliness. We also assessed timeli-
ness by using CDC postexposure recommendations 
(7), describing how many doses were administered 
within 4 and 14 days of the reported exposure.

Results

Cohort Characteristics
During May 1–November 1, 2022, a total of 991 
persons were enrolled in Virginia’s mpox close 
contact monitoring cohort and ended their 21-day 
monitoring period during the study period. Among 
the 932 persons for whom data about their method 
of participation were available, 491 (52.7%) used 
email, 239 (25.6%) reported directly to their local 
health department, 143 (15.3%) self-monitored, and 
59 (0.06%) used text messaging to access surveys. 
Of 991 contact records, 943 (95.2%) were complete 
and 48 (4.8%) were incomplete. During symptom 
monitoring, 99 (10.0%) contacts were not available 
for follow-up and 20 (2.2%) declined or no longer 
needed monitoring (e.g., their reported exposure 
was beyond the 21-day symptom monitoring pe-
riod, not determined to be a close contact, or from 
a person later determined to be MPXV negative). 
Eleven (1.1%) contact investigations were trans-
ferred to another jurisdiction. Of the 28 persons in 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 455

Figure 1. Mpox contact tracing 
and symptom monitoring cohort 
(n = 991), Virginia, USA, May 
1–November 1, 2022. Analyzed 
subcohorts included persons in 
whom mpox developed (n = 28) 
and healthcare workers exposed 
at work (n = 275).
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the close contact monitoring cohort in whom mpox 
developed, 26 (92.9%) completed their case inter-
view. Among 897 persons in the cohort for whom 
sex was recorded, 494 (55.1%) were male and 403 
(44.9%) female (Table 1). Age information was 
available for 824 persons; median age was 35 (inter-
quartile range [IQR] 26–49) years.

Persons with Mpox Cohort Characteristics
Within the cohort of 991 persons, mpox developed 
in 28 (2.8%) while they were being monitored for 
symptoms (Figure 1); 27 cases were confirmed and 
1 was probable. Twenty-seven (96.4%) persons 
were recorded as male and 1 (3.6%) as female (Ta-
ble 1). The median age was 36 (IQR 31–40) years. 
Among 27 persons with mpox who reported their 
race, 15 (55.6%) self-identified as White, 11 (40.7%) 
as Black, and 1 (3.7%) as Native Hawaiian or Oth-
er Pacific Islander. Among 25 persons with mpox 
who reported ethnicity, 8 (32.0%) self-identified 
as Hispanic. Information on sexual orientation 
and gender identity was available for 20 persons 
with mpox; 19 (94.7%) self-identified as bisexual or 
gay cisgender men, and 1 (5%) self-identified as a 
straight cisgender woman.

Reported Mpox Exposure Settings
Exposure information was available for 943 persons 
in the cohort (Figure 1). Of those, 326 (34.5%) were 
exposed in households, 310 (32.9%) in healthcare set-
tings, 145 (15.4%) at private gatherings or parties, 58 
(6.2%) in workplaces, 52 (5.5%) in an airport or air-
plane, 33 (3.5%) in a school, 14 (1.5%) in other congre-
gate settings, and 5 (0.5%) in a long-term-care facility 
(Figure 2).

Reported Mpox Exposures in Persons in  
Whom Mpox Developed
Reported exposure setting information was available 
for 18 of the 28 persons in whom mpox developed; 10 
reported MPXV exposures from a household (55.6%) 
and 7 from a private gathering or party (38.9%). One 
(5.6%) person was being monitored for exposure on 
an airplane or in an airport, but investigators later de-
termined that that was not the most likely source of 
infection (Figure 2).

Among the 25 persons in whom mpox developed 
and who provided additional information about their 
MPXV exposure, 22 (88.0%) reported recent sexual 
activity. Seven men reported sexual activity with 
multiple male partners, and 3 of them reported that 
their partners were anonymous. Mpox developed in 
1 straight cisgender woman within the cohort after 
a reported sexual exposure from a male household 
contact. Of the 3 persons in whom mpox developed 
without their having reported recent sexual contact, 2 
persons reported that their exposure was from a con-
gregate setting (specifically, a prison and a convention 
event) and 1 person reported close nonsexual contact. 
Geographic exposure location was available for 24 
persons: 18 (75.0%) reported in-state exposures and 
6 (25.0%) reported exposures during out-of-state do-
mestic travel (to Georgia, North Carolina, New York, 
and Massachusetts) or international travel (Mexico).

Mpox Exposure Risk Categories
Among 971 persons for whom exposure risk catego-
ries were assigned by using CDC criteria (10) (Fig-
ure 1), 374 (38.5%) were assigned intermediate risk, 
360 (37.1%) lower risk, 225 (23.2%) higher risk, and 
12 (1.2%) no risk (Table 2). Among the 28 persons in 
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Table 1. Characteristics of 991 persons enrolled in mpox contact tracing and symptom monitoring cohort, Virginia, USA, May 1–
November 1, 2022* 

No. (%) persons 
Characteristic Total Persons without mpox  Persons with mpox 
Total 991 963 28 
Sex assigned at birth    
 M 494 (55.1) 467 (53.7) 27 (96.4) 
 F 403 (44.9) 402 (46.3) 1 (3.6) 
 Missing 94 94 0 
Age group, y    
 0–9 32 (3.9) 32 (4.0) 0 (0) 
 10–19 48 (5.8) 48 (6.0) 0 
 20–29 130 (15.8) 128 (16.1) 2 (7.1) 
 30–39 205 (24.9) 193 (24.2) 12 (42.9) 
 40–49 155 (18.8) 145 (18.2) 10 (35.7) 
 50–59 101 (12.3) 99 (12.4) 2 (7.1) 
 60–69 103 (12.5) 101 (12.7) 2 (7.1) 
 70–79 0 (4.4) 36 (4.5) 0 
 >80 14 (1.7) 14 (1.8) 0 
 Missing 167 167 0 
*Calculated percentages exclude missing values. 
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whom mpox developed for whom an exposure risk 
category was assigned, 20 (71.4%) exposures were 
categorized as high risk, 4 (14.3%) as intermediate 
risk, and 3 (10.7%) as lower risk; 1 person (3.6%) was 
not assigned an exposure risk category (Table 2). The 
degree of association between assigned exposure risk 
category and likelihood of mpox development was 
high (p<0.001) (Table 2).

HCW Occupational Exposures
A total of 275 persons self-identified as HCWs who 
were exposed at work (Figure 1). Among the HCWs 
who reported their role, 2 (2.1%) were administrators, 
14 (15.4%) worked in emergency medical services, 1 
(1.1%) was an imaging technician, 27 (29.7%) were 
nurses, 7 (7.7%) were nurse assistants, 14 (15.4%) 
worked as other direct care HCWs, 1 (1.1%) worked as 
an other nondirect care HCW, 21 (23.1%) were health-
care providers, and 3 (3.3%) worked in registration. 
Among 273 HCWs exposed at work for whom an expo-
sure risk category was assigned, 34 (12.5%) exposures  

were categorized as high risk, 48 (17.6%) as interme-
diate risk, 180 (65.9%) as low risk, and 11 (4.0%) as no 
risk (e.g., personal protective equipment was appro-
priately worn during exposure encounter[s]).

Vaccine Uptake
Of the 991 persons in the cohort, 333 (33.6%) received 
>1 vaccine dose that was recorded in Virginia’s Im-
munization Information System (Table 3; Figure 1). 
In addition, 212 received a second dose, representing 
63.7% of those available for follow-up and indicating 
that 21.4% of the cohort completed the mpox series 
during May–November 2022.

Of the 225 persons identified as having had a 
high-risk exposure, 121 (53.8%) received >1 dose. A 
total of 166 (44.3%) of 374 persons who had interme-
diate risk exposures received >1 dose, and 35 (9.7%) 
of 360 persons self-identified as having lower expo-
sure risk received >1 dose.

Information about exposure and vaccination 
dates were available for 322 of the 333 vaccinated  

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 457

Figure 2. Reported monkeypox virus exposure setting categories from mpox contact tracing and symptom monitoring cohort (n = 991), 
Virginia, USA, May 1–November 1, 2022. For persons in whom mpox developed while being monitored (n = 28), asterisk indicates 
where initial reported exposure setting differed from most likely infection source.

 
Table 2. Exposure risk categories and likelihood of developing mpox among 991 persons included in mpox contact tracing and 
symptom monitoring cohort, Virginia, USA, May 1–November 1, 2022* 

Risk category 
No. (%) persons 

χ2 (d.f.)† p value Total Persons without mpox Persons with mpox 
None 12 (1.2) 12 (1.3) 0   
Lower 360 (37.1) 357 (37.8) 3 (11.1) 39.7 (2) <0.001 
Intermediate 374 (38.5) 370 (39.2) 4 (14.8) 
High 225 (23.2) 205 (21.7) 20 (74.1) 
Missing 20 19 1   
*Calculated percentages exclude missing values. Predetermined categories were defined by the nature of the exposure using criteria defined by the 
Centers for Disease Control and Prevention (10). 
†χ2 analysis excludes persons in the none category. 
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persons. A total of 295 (91.6%) persons received post-
exposure vaccination, and 27 (8.4%) received preex-
posure prophylaxis (Table 3).

Timeliness of Postexposure Vaccination
Among the 295 persons who received postexposure 
vaccination, the median time of first vaccine admin-
istration after MPXV exposure was 8 (IQR 4–12) days 
(Table 3). In terms of timeliness of recommended 
postexposure administration, 82 (27.8%) persons 
were vaccinated <4 days after MPXV exposure and 
252 (85.4%) were vaccinated <14 days after exposure 
(Table 3). Information on exposure and vaccination 
dates were available for 3 of the vaccinated persons 
in whom mpox developed; all had received postexpo-
sure prophylaxis within 14 days (4, 11, and 12 days).

Discussion
The data tool that we used enabled flexibility and for 
real-time review of data from personnel at the local 
and state health department level to track the num-
ber of persons who had been exposed to MPXV and 
offer interventions to persons at high risk for expo-
sure to stop transmission. Contact lists were easily 
exported so that health department personnel could 
cross-check against Virginia’s vaccine registry to en-
courage vaccination completion. The overall high 
completion rate of contact records and low number 
of persons not available for follow-up during symp-
tom monitoring demonstrates successful implemen-
tation and use of the VDH mpox close contact moni-
toring response.

We found no cases of mpox in HCWs exposed 
at work. Most exposures for HCWs were lower risk, 
potentially suggesting either some use of personal 
protective equipment or minimal contact with the 
patient. Details about high-risk exposures in medical 
settings were not provided and could be an area of 
further research. Similarly, mpox did not develop in 
any persons exposed in businesses, workplaces, or ed-
ucational settings. We do report mpox development  

after household exposures, but case interviews more 
specifically identified that the source of infection 
was from sexual contact in a household environ-
ment rather than cohabitation with an infected per-
son. That finding is consistent with results from a 
recent study of undiagnosed mpox prevalence in the 
United States (11).

The high degree of association between assigned 
exposure risk category and likelihood of mpox de-
velopment suggests that risk categories are useful for 
public health officials identifying persons to priori-
tize for interventions. Our cohort analysis identified 
3 persons who were labeled lower risk but in whom 
mpox developed. One person disclosed sexual con-
tact unrelated to known exposure, and it is likely 
that the assigned classification instead reflected the 
exposure for which the person was being monitored. 
One person disclosed recent sexual contact without 
other potential exposure sources and represents a 
misclassification of exposure risk category, under-
representing mpox risk. The third person did not 
complete an interview, so it is unclear how that risk 
category was assigned.

Overall vaccine uptake in this cohort was low; 
only one third of the cohort received >1 dose and 
one fifth completed the 2-dose series. Just over 
half of persons who were identified as having had 
a high-risk exposure received a vaccine. However, 
more persons categorized as having high-risk expo-
sure were vaccinated than were persons in other ex-
posure risk categories, which might suggest higher 
motivation to receive vaccination or success in vac-
cine prioritization.

Timely vaccine uptake for postexposure pro-
phylaxis was low; <30% of persons were vaccinated 
within the recommended 4 days after a known or 
presumed MPXV exposure. However, most (85%) 
persons who received postexposure vaccine re-
ceived it within 14 days of their exposure, which 
may confer some protection (6). Factors such as 
reduced patient access to diagnostic testing may  
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Table 3. Vaccine uptake and postexposure timeliness in mpox contact tracing and symptom monitoring cohort, Virginia, USA, May 1–
November 1, 2022* 
Characteristic Value 
All persons 991 
 Received >1 dose 333 (33.6) 
  Before exposure 27 (8.4) 

  After exposure 295 (91.6) 
  Unable to determine 10 
 Received 2 doses 212 (63.7) 
Persons vaccinated after exposure  295 
 Median time from exposure to first dose, d 8 (range 4–12) 
 No. receiving 1st dose within <4 days of exposure 82 (27.8) 
 No. receiving 1st dose within <14 days of exposure 252 (85.4) 
*Values are no (%) except as indicated. Calculated percentages exclude missing values. 
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have delayed the initial mpox case-patient’s diagno-
sis, affecting exposure notification to contacts. In ad-
dition, vaccine availability might have affected vac-
cination timeliness.

Among the limitations of our retrospective co-
hort analysis, persons exposed to MPXV or who had 
mpox might have been missed by official VDH re-
porting channels, and we were unable to estimate 
how well our cohort captured these populations. 
Also, persons with mpox interviewed by public 
health personnel may have been hesitant to discuss 
sexual exposure details, leading to underreporting 
and lack of follow-up with contacts or misclassifica-
tion of infection risk.

In conclusion, our study describes mpox contact 
tracing and symptom monitoring in Virginia and 
evaluated characteristics of persons with reported ex-
posures and can be used to inform public health pre-
paredness and response measures. The flexible data 
collection tools and real-time access to data used by 
VDH in the mpox response can serve as a framework 
for future emerging diseases.
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Burkina Faso is a landlocked country within the 
meningitis belt of sub-Saharan Africa that expe-

riences hyperendemic bacterial meningitis and an 
elevated risk for recurrent meningitis outbreaks (1). 
Commonly characterized by headache, fever, stiff 
neck, and altered consciousness, bacterial meningitis 

can lead to permanent disability or death if not quick-
ly detected and treated.

Historically, meningitis epidemics within the 
meningitis belt of Africa have been caused primarily 
by Neisseria meningitidis serogroup A (NmA) (2–4). In 
2010, Burkina Faso was the first of many meningitis-
belt countries to introduce the novel monovalent me-
ningococcal serogroup A conjugate vaccine, MenAfri-
Vac, nationwide. After MenAfriVac introduction, 
meningitis cases and outbreaks caused by NmA were 
no longer reported (2,4). However, seasonal meningi-
tis outbreaks and epidemics still occur in the region 
because of non-NmA serogroups, including N. men-
ingitidis serogroup C (NmC), X (NmX), and W (5). In 
particular, NmC has caused several large outbreaks 
both within and outside the meningitis belt in the 
past several years (6).

Meningitis caused by NmC had been generally 
uncommon in the meningitis belt of Africa. Occasion-
al NmC outbreaks and epidemics have been report-
ed in the belt during the past 50 years, including an 
NmC epidemic in 1975 in northern Nigeria and small, 
localized outbreaks in Burkina Faso in 1979, Mali dur-
ing 1988–1992, and Nigeria during 2013–2014 (7–11). 
In 2015, however, NmC emerged as a serious public 
health threat after a focal NmC infection outbreak in 
northern Nigeria spread to neighboring Niger, where 
a large NmC epidemic that had 9,367 suspected cases 
and 549 deaths was reported (12). In 2017, the larg-
est recorded meningitis epidemic caused by NmC 
occurred in northern Nigeria; 14,518 suspected cases 
and 1,166 deaths were reported (13). Through molec-
ular typing, the recent epidemics in Niger and Nige-
ria were shown to be caused by a new NmC strain, 
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During January 28–May 5, 2019, a meningitis outbreak 
caused by Neisseria meningitidis serogroup C (NmC) 
occurred in Burkina Faso. Demographic and laboratory 
data for meningitis cases were collected through national 
case-based surveillance. Cerebrospinal fluid was col-
lected and tested by culture and real-time PCR. Among 
301 suspected cases reported in 6 districts, N. meningiti-
dis was the primary pathogen detected; 103 cases were 
serogroup C and 13 were serogroup X. Whole-genome 
sequencing revealed that 18 cerebrospinal fluid speci-
mens tested positive for NmC sequence type (ST) 10217 
within clonal complex 10217, an ST responsible for large 
epidemics in Niger and Nigeria. Expansion of NmC 
ST10217 into Burkina Faso, continued NmC outbreaks 
in the meningitis belt of Africa since 2019, and ongoing 
circulation of N. meningitidis serogroup X in the region 
underscore the urgent need to use multivalent conjugate 
vaccines in regional mass vaccination campaigns to re-
duce further spread of those serogroups.



Neisseria meningitidis Serogroup C, Burkina Faso

sequence type (ST) 10217 belonging to clonal complex 
(CC) 10217 (12,14). Comparative genomic analysis 
suggested that NmC ST10217 emerged from a menin-
gococcal strain previously identified in nasopharyn-
geal specimens of asymptomatic human carriers after 
acquiring virulence genes (15).

In January 2019, a cluster of unexplained deaths 
was reported from the Boutou commune of Diapaga 
District in Burkina Faso’s Est administrative region. 
The Est region shares its northern border with Ni-
ger and southern border with Benin and Togo. The 
chief medical officer, regional director of health, and 
director of population health protection were alert-
ed, which led to epidemiologic investigations in Di-
apaga that confirmed a meningitis outbreak caused 
by NmC. Because of the rise of NmC cases in neigh-
boring countries, recent large NmC outbreaks in the 
region, concern for the spread of NmC ST10217, and 
limited availability of NmC vaccines, outbreak inves-
tigation was critical to elucidate the evolving epide-
miology of meningitis within the region (16). We de-
scribe the 2019 meningitis outbreak in Burkino Faso, 
the outbreak response, and microbiologic features of 
the NmC strain driving the outbreak.

Methods

Meningitis Surveillance
Population-based meningitis surveillance exists in 2 
complementary systems in Burkina Faso (17). First, 
district-level aggregate reports of clinically defined 
(suspected) meningitis cases and meningitis-related 
deaths are transmitted weekly by the Telegramme 
Lettre Official Hebdomadaire (TLOH). The TLOH 
system has been functional in Burkina Faso since 
1997 but does not hold any laboratory or demograph-
ic information aside from that obtained from the 
administrative district reporting cases (17). Second, 
the TLOH system is complemented by nationwide 
case-based surveillance (CBS), conducted by using 
the cloud-based System for Tracking Epidemiologic 
Data and Laboratory Specimens (STELAB). STELAB 
collects detailed case-level demographic, clinical, and 
laboratory data and assigns barcodes to each case re-
port form and collected specimen, enabling real-time 
tracking of a specimen’s journey from the district 
laboratory to the regional laboratory, then finally to 
a national reference laboratory (NRL) (1). National 
meningitis CBS data collected during 2018–2020 were 
validated in June 2021 and used for this analysis.

Alert and epidemic thresholds were defined ac-
cording to published World Health Organization 
(WHO) guidelines. The alert threshold was defined 

as >3 suspected cases per week/100,000 inhabitants; 
the epidemic threshold was defined as >10 suspected 
cases per week/100,000 inhabitants (18). A suspected 
case was defined according to WHO guidelines as 
a sudden onset of fever (>38.5°C) accompanied by 
neck stiffness, altered consciousness, or other men-
ingeal signs, including flaccid neck, bulging fonta-
nelle, or convulsions in children <2 years of age (18). 
A confirmed bacterial meningitis case was defined as 
any suspected or probable case that was laboratory 
confirmed by culturing or by identifying a bacterial 
pathogen (N. meningitidis, Streptococcus pneumoniae, 
Haemophilus influenzae type b) in the cerebrospinal flu-
id (CSF) or blood by PCR as previously described (18).

Laboratory
CSF specimens were collected from patients with 
suspected meningitis as part of routine surveil-
lance. Confirmatory testing and serogrouping were 
performed by direct real-time PCR at the NRL. We 
performed further serogroup confirmation and mo-
lecular characterization for 18 CSF specimens at the 
Bacterial Meningitis Laboratory, National Center for 
Immunization and Respiratory Diseases, Centers 
for Disease Control and Prevention (CDC) (Atlanta, 
GA, USA). We enriched the specimens by using se-
lective whole-genome amplification procedures and 
assessed the amplification by real-time PCR of the 
superoxide dismutase gene, sodC, as previously de-
scribed (19). We performed whole-genome sequenc-
ing of all 18 CSF specimens that yielded a PCR cycle 
threshold of <16 for sodC after enrichment; the re-
sulting genome assembly containing >1,400 core-ge-
nome multilocus sequence typing loci (20). We ana-
lyzed sequencing data by using the analysis pipeline 
developed in-house (19). We determined clonal 
complex and sequence types and characterized the 
gene locus encoding the polysaccharide capsule and 
peptide typing loci as previously described (19). 
For N. meningitidis CC10217 phylogenetic analysis, 
we compared 278 high-quality genome assemblies 
from isolates collected from Africa during 2012–2019 
and the 18 Burkina Faso outbreak samples from 
2019. All whole-genome sequencing data from this 
outbreak are publicly available in the PubMLST  
database (https://pubmlst.org/neisseria) (Appendix 
Table, https://wwwnc.cdc.gov/EID/article/30/3/ 
22-1760-App1.xlsx).

Epidemiologic Analyses
We calculated cumulative incidence as the number 
of reported suspected meningitis cases in CBS data 
per 100,000 inhabitants by using 2019 health district 
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population data. District populations in 2019 were 
provided as part of the TLOH line list by the Burkina  
Faso Ministry of Health. We extracted details of  
events prompting outbreak investigations from in-
vestigative reports provided by health districts under 
the supervision of the Ministry of Health. We deter-
mined the timing of key events related to the outbreak 
according to WHO weekly meningitis surveillance 
bulletin reports derived from TLOH data during the 
period of interest. We then analyzed CBS data in par-
allel to confirm the chronology of events and provide 
case-level laboratory and demographic information 
for each suspected case. We collected dates, admin-
istrative coverage, and vaccine type for reactive vac-
cination campaigns in each affected district from vac-
cination campaign reports provided by the Direction 
de la Protection de la Santé de la Population under 
Burkina Faso’s Ministry of Health.

We used shapefiles of the national, regional, and 
health district boundaries obtained from the Direc-
tion de la Protection de la Santé de la Population to 
show the geographic distribution of cases during the 
outbreak. We defined the spatial location of cases as 
the patient’s reported district of residence. The Di-
apaga health district is divided into 8 communes and 
has 37 health facilities that each serve a population 
covering ≈11 km2 of land. For surveillance purposes, 
the district has been subdivided into 4 epidemiologic 
surveillance zones that have ≈100,000 inhabitants per 

zone (Figure 1). For our analysis, we mapped Diapa-
ga’s zones according to each commune’s correspond-
ing health facility zoning in 2019. We maintained da-
tasets and analytic results in Microsoft Excel version 
2108 (https://www.microsoft.com) and performed 
data analyses and mapping by using R version 4.1.3 
(The R Project for Statistical Computing, https://
www.r-project.org). This work was reviewed by CDC 
and conducted consistent with applicable federal law 
and CDC policy (e.g., 45 Code of Federal Regulation 
part 46, 21 Code of Federal Regulation part 56; 42 
United States Code [U.S.C.] §241(d); 5 U.S.C. §552a; 
44 U.S.C. §3501 et seq.).

Results

Outbreak and Response Timelines
During January 28–January 31, 2019, a total of 19 sus-
pected cases (zone 1, 17 cases; zone 2, 2 cases) were 
reported from Diapaga; CSF samples were collected 
from each patient (Figure 1). On January 31, PCR test-
ing was performed on 12 of 19 specimens; 7 were con-
firmed positive for NmC. The remaining 7 samples 
were tested on February 11, confirming 3 additional 
NmC cases. All 10 confirmed cases came from zone 
1. A reactive vaccination campaign was conducted 
during February 9–13 in 11 health facilities located 
within zone 1 of Diapaga by using the national stock-
pile of plain polysaccharide MenACWY vaccine. The 
campaign targeted persons who were 2–29 years of 
age and achieved an estimated 108% administrative 
coverage of the targeted population. No additional 
confirmed meningitis cases caused by any pathogen 
were reported from zone 1 during the 2019 epidemic 
season after February 11.

From the end of February through April, the out-
break spread to Diapaga zones 2, 3, and 4 and to neigh-
boring districts (Pama in the Est region and Sebba and 
Gayeri in the Sahel region) (Figures 1, 2). A vaccine re-
quest was submitted to WHO’s International Coordi-
nating Group (ICG) on Vaccine Provision on March 8; 
vaccines were delivered to affected areas on March 27 
and, during March 29–April 2, a second vaccination 
campaign with conjugate MenACWY vaccines ob-
tained through ICG was conducted in health facilities 
within Diapaga zones 2, 3, and 4 (Figure 3, panel A). 
The campaign targeted persons 1–29 years of age and 
achieved an estimated 111% administrative coverage. 
An additional ICG vaccine request was submitted on 
April 14 to cover Sebba and Gayeri. Plain polysaccha-
ride MenACW vaccines were obtained through ICG, 
and a third campaign targeting persons 2–29 years of 
age was conducted during June 13–17, achieving an 
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Figure 1. Meningitis surveillance zones in study of expansion 
of Neisseria meningitidis serogroup C clonal complex 10217 
during meningitis outbreak, Burkina Faso, January 28–May 5, 
2019. Main map indicates Diapaga health district divided into 8 
communes within Tapoa Province of Burkina Faso. Inset map 
indicates the location of Tapoa Province in Burkina Faso. Colors 
indicate subdivision of the health district into 4 epidemiologic 
surveillance zones that have ≈100,000 inhabitants per zone. 
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estimated 80% administrative coverage in Sebba and 
87% in Gayeri (Figure 3, panel A). The second and 
third reactive vaccination campaigns were conducted 
in locations that either crossed the epidemic thresh-
old (Diapaga zone 2, Sebba) or were considered to be 
at risk for outbreak expansion (Diapaga zones 3 and 
4, Gayeri).

Epidemiologic Characterization of the Outbreak
During January 28–May 5, 2019, a total of 301 men-
ingitis cases were reported from 6 districts in the Est 
(Diapaga, Gayeri, Pama, and Bogandé) and Sahel 
(Sebba and Dori) regions through Burkina Faso’s na-
tional meningitis CBS, corresponding to a cumula-
tive incidence of 17 cases/100,000 population during 
this 14-week period (Figure 3). Diapaga experienced 
the highest disease burden during the outbreak; the 
cumulative incidence was 29 cases/100,000 popula-
tion. Cumulative incidences per 100,000 population 
were 27 cases in Sebba, 15 in Pama, 14 in Gayeri, and 
6 each in Dori and Bogandé (Figure 2). We calculated 
all cumulative incidence rates according to suspected 
cases. Of the total reported cases, 290 (96%) had spec-
imens collected; among those specimens, 286 (99%) 
were transported to an NRL and tested by PCR or cul-
ture. During the outbreak, the total case-fatality rate 
reported through CBS in the 6 districts was 5.6%. Of 
the 301 suspected meningitis cases, the pathogen was 
confirmed for 137 (46%): 103 (75%) cases were caused 
by NmC, 16 (12%) by S. pneumoniae, 13 (9%) by NmX, 
3 (2%) by non–type b H. influenzae, and 2 (1%) by H. 
influenzae type b (Tables 1, 2).

Among the 103 persons with confirmed NmC 
infection, 83 (86%) persons were 5–29 years of age, 
representing a narrower age distribution than sus-
pected case-patients, of whom only 50% were in this 
age range (Figure 4). A preponderance of confirmed 
NmX was observed among cases reported in Dori; al-
though only 23 (7.6%) suspected cases were reported 
from Dori, 6 (46%) of the 13 confirmed NmX cases 
were reported from this district.

Molecular Typing and Phylogeny
A total of 18 clinical specimens from the outbreak, 
collected during January 28–May 6 from Diapaga 
zones 1–3 (9 specimens from zone 1, 6 from zone 2, 
3 from zone 3), were whole-genome sequenced at the 
CDC Bacterial Meningitis Laboratory. The patients 
from whom the specimens were collected came from 
13 different villages. All 18 N. meningitidis strains be-
longed to serogroup C and ST10217, the core ST of 
CC10217. In addition, all specimens shared the same 
variant type: PorA type P1.21-15,16; FetA type F1–7; 

and PorB type 3–463. Phylogenetic analysis (Figure 
5) indicated the N. meningitidis strain from Burkina 
 Faso shared a common ancestor with ST10217 strains 
that have been causing disease in Niger and Nigeria 
since 2013. The strains most closely related to those 
from Burkina Faso were isolates collected from Niger 
in 2017.

Discussion
We report an NmC ST10217 outbreak in Burkina Faso, 
which occurred during the 2019 epidemic season, that 
demonstrates the expansion of this epidemic-prone 
strain into and within Burkina Faso. Despite a history 
of this strain causing large epidemics, the 2019 out-
break in Burkina Faso remained relatively small, pos-
sibly because of the responsive national surveillance 
system and rapid implementation of reactive vaccina-
tion campaigns.

According to the ICG’s performance indicator 
for timely outbreak response, a country should take 
<28 days from the time of crossing the meningitis 
epidemic threshold to implementing a reactive vac-
cination campaign. Both vaccination campaigns in 
Diapaga exceeded this indicator; the first vaccination 
campaign using national vaccine stock in zone 1 was 
initiated in 6 days, and the second campaign in zones 
2, 3, and 4 was initiated 26 days after crossing the 
epidemic threshold. However, the third vaccination  
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Figure 2. Meningitis cumulative incidence (cases/100,000 
population) across 6 affected districts in the Sahel and Est regions 
of Burkina Faso in study of expansion of Neisseria meningitidis 
serogroup C clonal complex 10217 during meningitis outbreak, 
January 28–May 5, 2019. Colors indicate incidence of meningitis 
cases per 100,000 population. Inset map shows location of 
surveilled regions in Burkina Faso.
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campaign in Sebba and Gayeri was delayed and was 
implemented 67 days after crossing the epidemic 
threshold. Key factors affecting vaccination campaign 
plans in Sebba and Gayeri were geographic barriers 
and insecurity that made some of the target areas 
difficult to access. The high proportion of collected  

specimens, rapid specimen transport to and confir-
matory testing at the NRL, and rapid transmission 
of available surveillance data through STELAB en-
abled swift outbreak confirmation and coordination 
of response efforts. Furthermore, the availability of 
vaccines in the national stockpile likely expedited the 
particularly rapid response (6 days) for the first vacci-
nation campaign in Diapaga zone 1, highlighting the 
utility of having decentralized vaccine stockpiles at 
national and regional levels. This strategy might be-
come more feasible once a sufficient stock of the up-
coming NmCV-5 pentavalent conjugate vaccine cov-
ering serogroups A, C, Y, W, and X becomes available 
(21). The NmCV-5 vaccine was prequalified in July 
2023 and is expected to be available in ICG’s emer-
gency stockpile in early 2024.

Recognizing NmC ST10217’s potential to cause 
explosive outbreaks and continued expansion, at-
risk countries in the region should continue pri-
oritizing, investing, and building a responsive 
meningitis surveillance and laboratory network 
to rapidly guide vaccination response in outbreak 
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Figure 3. Number of meningitis cases in 
6 affected districts in study of expansion 
of NmC clonal complex 10217 during 
meningitis outbreak, Burkina Faso, 
January 28–May 5, 2019. Colors indicate 
the specific district in Burkina Faso. A) 
Numbers of reported meningitis cases 
(suspected, probable, and confirmed), 
January 1–June 31, 2019. B) Numbers of 
confirmed NmC cases, January 28–May 
5, 2019. NmC, Neisseria meningitidis 
serogroup C.

 
Table 1. Number of PCR-confirmed bacterial meningitis cases 
during January 28–May 5, 2019, in study of Neisseria 
meningitidis serogroup C clonal complex 10217 expansion in 
Burkina Faso* 
Bacteria No. (%) cases 
Neisseria meningitidis 
 Serogroup A 0 
 Serogroup B 0 
 Serogroup C 103 (75) 
 Serogroup W 0 
 Serogroup X 13 (9) 
 Serogroup Y 0 
Streptococcus pneumoniae 16 (12) 
Haemophilus influenzae 
 Type b 2 (1) 
 Non-b 3 (2) 
Total 137 
*Cases were from Diapaga, Sebba, Dori, Bogandé, Sebba, and Gayeri 
districts. 
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settings. Smaller focal N. meningitidis outbreaks 
should not be overlooked because a characteristic 
pattern of meningococcal disease is for a local out-
break to presage a large widespread epidemic (22). 
Before the rollout of MenAfriVac, large epidemic 
waves caused by NmA were observed over several 
decades; small, focal outbreaks preceded an explo-
sive epidemic every 5–12 years (23,24). The major 
variation in incidence observed with those epidem-
ic waves is believed to be unique to meningococ-
cus (24). Thus, despite the smaller magnitude of 
the 2019 NmC meningitis outbreak compared with 
those in 2015 and 2017, NmC will likely not disap-
pear from the region without vaccine intervention. 
NmC continued to be detected in the meningitis 
belt during 2020–2023 (25). Awareness of potential 
increases in NmC meningitis cases during the next 
meningitis season will be critical. Although not the 
dominant pathogens detected, meningitis cases 
caused by S. pneumoniae and H. influenzae were also 
reported during this outbreak. Burkina Faso intro-
duced the H. influenzae type b conjugate vaccine 

in 2006 and the 13-valent pneumococcal conjugate 
vaccine in 2013. Further analyses of serotype data 
will help strengthen surveillance and monitoring of 
invasive disease caused by those bacteria.

The pattern and manifestation of the 2019 men-
ingitis outbreak during the dry season, which is 
dominated by the Harmattan winds, is consistent 
with the typical seasonality of meningococcal men-
ingitis outbreaks in the region (26–28). Similarly, 
the age distribution of patients with confirmed 
NmC infections did not differ much from what 
has been typically observed for meningococcal dis-
ease; 86% of patients with confirmed NmC were 
5–29 years of age (11). However, the difference in 
age distribution between confirmed NmC and sus-
pected cases during the 2019 outbreak suggests 
that a substantial percentage of the suspected cases 
are likely not false negatives but might represent 
other pathogens or indicate increased care-seeking 
among certain age groups. The difference is expect-
ed because the suspected case definition is designed 
to have high sensitivity but low specificity, and 
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Table 2. Number of reported cases of meningitis according to causative pathogen during January 28–May 5, 2019, in study of 
Neisseria meningitidis serogroup C clonal complex 10217 expansion in Burkina Faso* 

Characteristics 
Suspected/probable 

cases† 
Confirmed cases, n = 137 

NmC NmX Streptococcus pneumoniae Haemophilus influenzae 
Total no. cases 164 103 13 16 5 
Patient sex 
 F 92 (56) 45 (44) 3 (23) 5 (31) 3 (60) 
 M 72 (44) 58 (56) 10 (77) 11 (69) 2 (40) 
Districts reporting cases 
 Diapaga 87 (53) 54 (52) 6 (46) 2 (13) 2 (40) 
 Sebba 33 (20) 30 (29) 0 1 (6) 0 
 Dori 13 (8) 2 (2) 6 (46) 2 (13) 0 
 Bogandé 14 (9) 4 (4) 0 4 (25) 3 (60) 
 Pama 10 (6) 5 (5) 0 5 (31) 0 
 Gayeri 7 (4) 8 (8) 1 (8) 2 (13) 0 
*Values are no. (%). A total of 301 cases were reported. NmC, Neisseria meningitidis serogroup C; NmX, Neisseria meningitidis serogroup X. 
†Includes 3 cases that met the definition of a probable case as previously described (18). 

 

Figure 4. Age distribution of 
patients with suspected and 
confirmed meningitis in study of 
expansion of NmC clonal complex 
10217 during meningitis outbreak, 
Burkina Faso, January 28–May 
5, 2019. Data are from districts of 
Diapaga, Sebba, Dori, Bogandé, 
Sebba, and Gayeri, Colors 
indicate the confirmed cause of 
meningitis; black line indicates 
number of suspected cases for 
each age group. The number 
of suspected cases includes 3 
cases that met the definition of 
a probable case as previously 
described (18). NmC, Neisseria 
meningitidis serogroup C; NmX, 
N. meningitidis serogroup X.
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many other diseases manifest symptoms similar to  
bacterial meningitis.

Three key limitations affected the analysis of the 
2019 NmC infection outbreak. First, the ongoing hu-
manitarian crisis in Burkina Faso caused by clashes 
between armed extremist groups has resulted in 
a greater need for resources to implement public 
health interventions. Security concerns have led to 
large-scale internal displacement of citizens, as well 
as health facility closures (29). During the 2019 men-
ingitis season, this crisis affected several of the areas 
that reported NmC cases. The humanitarian crisis 
might have reduced the likelihood of symptomatic 
persons effectively seeking healthcare and, thus, 
reduced the number of reported cases. In addition, 
incidence estimates relied on population projec-
tions from 2010, which were unable to account for 

major population movements, such as those caused 
by internal displacement. Second, data discrepan-
cies between STELAB and TLOH were observed. 
In TLOH, 292 suspected cases were reported dur-
ing the outbreak (compared with 301 in CBS), and 
a case-fatality rate of 8.2% was reported (compared 
with 5.6% in CBS). Data discrepancies and potential 
underreporting suggest that outbreak characteristics 
and cases reported in this study are not fully repre-
sentative of all NmC cases that occurred during the 
outbreak. Third, administrative vaccine coverage 
estimates, which were used to approximate reactive 
vaccination coverage after the outbreak, can be bi-
ased because of inaccurate numerators or denomi-
nators (30). Coverage estimates for all 3 vaccination 
campaigns conducted during this outbreak are like-
ly overestimates because inflated numerators caused 

Figure 5. Phylogenetic analysis of Neisseria meningitidis clonal complex 10217 isolates from invasive meningitis cases collected during 
2012–2019 in Mali, Nigeria, Burkina Faso, Togo, and Niger used in study of expansion of N. meningitidis serogroup C during meningitis 
outbreak, Burkina Faso, January 28–May 5, 2019. Colors indicate the major clades/subclades found in each country. Solid black stars 
on nodes indicate isolates from the Burkina Faso outbreak in 2019. Scale bar indicates nucleotide substitutions per site.
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by population movement were heavily affected by 
the ongoing humanitarian crisis.

In conclusion, meningococcal meningitis re-
mains a serious public health threat within the men-
ingitis belt of Africa. The 2019 NmC outbreak in 
Burkina Faso shows that a responsive national sur-
veillance system and laboratory network providing 
timely, spatially explicit case-level data can strength-
en outbreak monitoring, response efforts, and track-
ing of bacteria strains across the region. Detection 
of NmC ST10217, the strain responsible for previous 
large-scale epidemics in Niger and Nigeria and the 
cause of the 2019 Burkina Faso meningitis outbreak, 
reaffirms the capacity for novel strains to cross geo-
graphic boundaries. Preventive mass vaccination 
campaigns using a long-lasting meningococcal con-
jugate vaccine have proved effective in dramatically 
reducing disease, as demonstrated by the national 
rollout of the MenAfriVac vaccine across the belt. 
Since the 2019 outbreak in Burkina Faso, 3 consecu-
tive NmC outbreaks have occurred in neighboring 
Niger during the 2020–2023 epidemic seasons (25). 
The NmC outbreak in Niger during the 2022–23 sea-
son also spread to neighboring districts in Nigeria 
(31). Continued NmC outbreaks documented in the 
belt since the 2019 outbreak and circulation of other 
N. meningitidis non-A serogroups in the region in-
dicate a crucial need for the NmCV-5 vaccine (21). 
In particular, stocking this vaccine at the regional 
or national level would help ensure that vaccines 
are immediately ready for use in regional vaccina-
tion campaigns when needed. This vaccine strategy 
could substantially reduce disease caused by non-
serogroup A meningococcal pathogens and serves 
as a key step toward eliminating meningitis out-
breaks in the meningitis belt.
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Microsporidia are a group of obligate intracellular 
parasites comprising ≈1,300 species within >200 

genera (1). Microsporidia are considered to be closely 
related to fungi (2,3) and infect a broad range of inver-
tebrates and vertebrates, from protists to humans (4). 
Because of improved detection methods and greater 
awareness, microsporidia have been detected in a 
broad range of human populations, including chil-
dren, travelers, elderly persons, and organ transplant 
recipients (5). Persons with high exposure to animals 

and contaminated soil and water are considered at 
risk for microsporidiosis (6). Of the several species 
of microsporidia that infect humans, Encephalitozoon 
cuniculi is the most common (7). Four genotypes of E. 
cuniculi have been identified on the basis of variable 
repeats in the rRNA internal transcribed spacer; how-
ever, human infections are mostly associated with 
genotypes I and II (8).

The digestive tract is an entrance point for mi-
crosporidia and subsequent spreading of infection 
occurs in all parts of the intestine. Within weeks, 
infection spreads to other tissues and organs, most 
commonly the kidney, liver, spleen, lung, and brain, 
depending on the species-specific interaction with 
the host (8). However, the unique mechanism of host 
cell invasion involving a highly specialized struc-
ture, the 10–50 μm long polar filament, enables only 
limited spread over short distances within the host. 
Therefore, the dissemination rate suggests the pos-
sible engagement of macrophages or other immune 
cells involved in inflammatory responses, which can 
serve as vehicles transporting microsporidia to foci 
outside of the intestine (9,10). Microsporidia are of-
ten overlooked in clinical samples because of prob-
lematic diagnoses, increasing the likelihood of hid-
den infections that can cause extensive tissue damage 
and various nonspecific pathologies and that often go 
without effective treatment (11).

Total joint arthroplasty is one of the most com-
mon surgical procedures in orthopedics to replace 
joints in patients with degenerative diseases (12). 
Revision surgeries are required in >10% of those pa-
tients because of implant failure caused mainly by 
prosthetic joint infection and aseptic implant loosen-
ing from inflammation (13,14). Whereas prosthetic 
joint infection is caused by bacterial infection (e.g., 
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Total joint arthroplasty is a commonly used surgical pro-
cedure in orthopedics. Revision surgeries are required 
in >10% of patients mainly because of prosthetic joint 
infection caused by bacteria or aseptic implant loosen-
ing caused by chronic inflammation. Encephalitozoon 
cuniculi is a microsporidium, an obligate intracellular 
parasite, capable of exploiting migrating proinflamma-
tory immune cells for dissemination within the host. We 
used molecular detection methods to evaluate the inci-
dence of E. cuniculi among patients who had total hip or 
knee arthroplasty revision. Out of 49 patients, E. cuniculi 
genotypes I, II, or III were confirmed in joint samples 
from 3 men and 2 women who had implant loosening. 
Understanding the risks associated with the presence of 
microsporidia in periprosthetic joint infections is essen-
tial for proper management of arthroplasty. Furthermore, 
E. cuniculi should be considered a potential contributing 
cause of joint inflammation and arthrosis.
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Staphylococcus aureus, Streptococcus spp., and En-
terococcus faecalis) and pathologic growth around 
the prosthetic joint (15), aseptic implant loosening 
results from chronic inflammation caused by acti-
vation of resident immune cells in contact with im-
plant wear debris or allergic reactions to metal ions 
derived from implant materials (16). However, the 
classification of aseptic implant loosening might be 
misleading because other pathogens are often over-
looked, and the condition is potentially mislabeled 
as aseptic (17).

E. cuniculi is considered a cause of osteolysis 
in hip periprosthetic tissue (17), and connections 
between proinflammatory immune responses and 
concentration of E. cuniculi in inflammatory foci 
have been reported (9,10). Understanding the risks 
for microsporidiosis within periprosthetic joints is 
essential for proper arthroplasty management. We 
evaluated the incidence of generally neglected mi-
crosporidia among patients who had total hip or 
knee arthroplasty revision. 

Methods

Patients
We investigated samples obtained from immuno-
competent patients who were hospitalized or who 
visited the orthopedic clinic at Bulovka Hospital 
(Prague, Czech Republic) during May 2020–Septem-
ber 2021. The first group of patients had undergone 
a hip puncture/total hip revision arthroplasty, and 
the second group had undergone a knee puncture/
knee revision arthroplasty (in 1 case, the patient only 
underwent a knee arthroscopy). We assigned patients 
to 3 diagnostic groups according to microbiologic cul-
tures and criteria of the Infectious Diseases Society of 
America or the Musculoskeletal Infection Society for 
periprosthetic joint infection according to the judge-
ment of the treating physician: periprosthetic joint 
infection, aseptic implant loosening (aseptic loosen-
ing was diagnosed when signs of implant loosening 
were present, but infection was not the cause), and 
other diagnosis (patients who did not fit into the first 
2 groups) (18,19).

Sample Collection
Fragments of periprosthetic hip and knee tissues and 
joint fluids were collected intraoperatively; joint as-
pirates were collected during knee or hip punctures. 
Samples for microbiologic culture (i.e., samples of 
joint tissues, joint fluids, and surgical swabs from the 
endoprosthesis, tissues, or joints) were gathered in-
traoperatively. The number of samples collected was 

at the discretion of the orthopedic surgeon. Surgical 
swabs or other samples with insufficient volumes 
were excluded from the study. All samples were 
collected under sterile conditions. Each sample was 
placed in a separate sterile container and delivered 
at room temperature (20°–25°C) to the Department of 
Clinical Microbiology at Bulovka Hospital. Samples 
collected outside of laboratory working hours were 
maintained at room temperature (20°–25°C) over-
night and then processed.

Samples were processed in a laminar flow cabinet 
for microbiologic culture; aliquots were stored without 
preservatives at −20°C for further molecular inves-
tigation and sent to the Biology Centre of the Czech 
Academy of Sciences for microsporidia screening. For 
Neisseria identification, we inoculated samples onto 
GO blood agar (LabMediaServis s.r.o., https://www.
labmediaservis.cz) and 5% sheep blood agar, and in-
cubated at 37°C in 5% CO2 for 24 h for GO blood agar 
and 48 h for 5% sheep blood agar. We cultured sam-
ples on Endo agar, in liver broth, and on sheep blood 
agar (containing 10% NaCl) at 37°C in an aerobic at-
mosphere for 24 h and 48 h (blood agar). After 24 h, 
we subcultured the liver broth on 5% sheep blood agar 
in a 5% CO2 atmosphere and Endo agar in an aerobic 
atmosphere for another 24 h. We examined cultures for 
bacterial growth after 24 h and 48 h (GO blood agar). If 
no growth occurred, we incubated the 5% sheep blood 
agar and GO blood agar cultures for 7 d. For anaerobic 
cultures, we inoculated patient samples onto Schaedler 
agar and in thioglycolate broth and cultured in an 
anaerobic atmosphere for 48 h and a total of 7 d. De-
pending on the microbiologist’s decision, we subcul-
tured the thioglycolate broth cultures onto Schaedler 
agar. We identified all bacteria by using standard 
laboratory procedures, including biochemical testing, 
by using the BD Phoenix system (Becton Dickinson,  
https://www.bd.com), and, in the case of Salmonella 
Enteritidis, by serotyping. We performed antimicro-
bial drug susceptibility testing by using European 
Committee on Antimicrobial Susceptibility Testing 
methodology (https://www.eucast.org). We prepared 
fungal cultures on Sabouraud agar only when request-
ed by the orthopedic surgeon; those plates were incu-
bated aerobically at 37°C for 48 h, examined, and then 
cultured for a total of 7 d.

DNA Isolation
We used aliquots of tissue and primary materials 
from joint aspirates and fluids from each patient for 
DNA isolation. We homogenized a total of 200 mg 
of tissue or aspirate sediment by using bead disrup-
tion on a FastPrep-24 instrument (MP Biomedicals,  
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https://www.mpbio.com) at a speed of 5.5 m/s 
for 1 min. We extracted total DNA by using the  
DNeasy Blood and Tissue Kit (QIAGEN, https://
www.qiagen.com) according to the manufacturer’s in-
structions. We included an extraction negative control 
to each DNA extraction series to ensure the absence of 
contamination in reagents, consumables, and the en-
vironment. We stored extracted DNA at −20°C until 
PCR amplification. We isolated control DNA from pu-
rified E. intestinalis spores by using the same methods.

Molecular Examination
We amplified a partial sequence of the 16S rRNA gene 
that included the entire internal transcribed spacer 
by using nested PCR protocols with microsporidia-
specific primers (9). We used DNA obtained from  
E. intestinalis spores as a positive PCR control and ul-
trapure water (without template) as a negative control 
in each PCR run. We evaluated the PCR products by  
gel electrophoresis.

We processed DNA from microsporidia PCR-
positive samples by using a real-time quantitative 
PCR protocol that amplified a 268-bp region of the 
E. cuniculi 16S rRNA gene (9). We used negative con-
trols comprising unspiked specimens and diluent 
blanks for each PCR. We determined positive results 
according to mathematical algorithms included with 
the LightCycler System (Roche, https://www.roche.
com); results were positive when the cycle threshold 
was <43. We calculated the total number of spores in 
1 g of sample according to a standard curve derived 
from spore DNA that was serially diluted in water; 
dilutions ranged from 1 to 1 × 108 (R2 = 0.9903).

Phylogenetic Analyses
We purified PCR amplicons by using the QIAquick 
Gel Extraction Kit (QIAGEN), and sequencing was 
performed in both directions at SeqMe (https://
www.seqme.eu). Amplification and sequencing of 
each positive sample was repeated 3 times. 

We manually edited the nucleotide sequences 
by using ChromasPro 2.1.4 (Technelysium, https://
www.technelysium.com.au) and aligned the sequenc-
es with references from GenBank by using MAFFT 
version 7 (http://mafft.cbrc.jp). We performed phy-
logenetic analysis by using the maximum-likelihood 
method and evolutionary models selected by MEGA 
X software (MEGA, https://www.megasoftware.
net). We inferred the evolutionary history for partial 
sequences of the 16S rRNA gene, the entire internal 
transcribed spacer region, and a partial sequence of 
the 5.8S rRNA gene by using neighbor-joining analy-
ses and computed relationships between sequences 

by using the Tamura 3-parameter method, gamma 
distribution, and parametric bootstrap analysis of 
1,000 replicates in MEGA X software. 

Microscopic Examination
We examined microsporidia PCR-positive samples 
microscopically. We prepared slides by mechanically 
homogenizing tissue samples with a mortar and pes-
tle and centrifuged aspirates at 13,000 × g for 10 min; 
we stained aspirate sediments and homogenized tis-
sues with Calcofluor M2R (Sigma Aldrich, https://
www.sigmaaldrich.com) (17).

Ethics Statement
We analyzed existing specimens beyond routine micro-
biologic screening, focusing on verifying the association 
between inflammatory disease and the presence of mi-
crosporidia in inflammatory foci. Because the study was 
performed by using samples with no human interven-
tion arm, patient consent was not required.

Results
We screened a total of 94 samples from 49 patients 
who were 41–96 (median 71) years of age for micro-
sporidia infection in tissues surrounding the operated 
hip and knee joints. The mean age was 71 (SD+9.3; 
range 41–84) among hip replacement patients and 70 
(SD+9.0; range 62–96) years among knee replacement 
patients. The male to female ratio was 12 (36%) to 21 
(64%) in the hip replacement group and 9 (56%) to 7 
(44%) in knee replacement group. Most patients had 
prosthetic joint infections; only 3 patients had other 
diagnoses, and the remaining patients had aseptic 
implant loosening (Table 1). Laboratory examinations 
showed physiologic indicators were within reference 
ranges for all patients. Patients did not undergo im-
munosuppressive treatment during the study period.

Among screened patients, 16 underwent knee ar-
throplasty providing 36 samples, and 33 underwent 
hip arthroplasty providing 58 samples (Table 1). The 
number of samples obtained from patients was 1–7; 
multiple samples mostly represented more sample 
types (Figure 1). Most (n = 28) patients underwent 
primary revision, then secondary and further revi-
sions (9 each); 3 patients underwent repeated sur-
gery: primary/secondary revision (patient no. 24) 
and primary/third and further revision (patient nos. 
9 and 19) (Figure 1).

Of the 94 samples examined, most (61) were 
microbiologically sterile, whereas 12 samples were 
positive for S. aureus (5 were methicillin resistant), 6 
were positive for Escherichia coli, 3 were positive for 
E. faecalis, 3 were positive for Salmonella Enteritidis, 
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2 were positive for Staphylococcus epidermidis, and 2 
were positive for group G beta-hemolytic Streptococ-
cus. Streptococcus agalactiae, Corynebacterium tuberculo-
stearicum, Pseudomonas aeruginosa, or Enterococcus fae-
cium were detected in the remaining samples.

Encephalitozoon-specific DNA was confirmed in 
samples from 3 men and 2 women who were 63–78 
years of age. Phylogenetic analyses revealed E. cunic-
uli genotypes I, II, and III. The 5 sequences obtained in 
this study were 100% identical to GenBank sequences 
for E. cuniculi genotype I (accession no. KJ941140), 
II (accession no. MF062430), and III (accession no. 
KF736984) (Figure 2).

We detected microsporidia in knee or hip aspi-
rates obtained during ambulatory puncture and joint 
fluids and tissues recovered intraoperatively for all 5 
Encephalitozoon-positive patients (Table 2). Of those 5 
patients, 3 had periprosthetic joint infection, and 2 had 
aseptic implant loosening. E. cuniculi genotype I was 
most often detected, in 8 knee and hip samples from 3 
patients; the number of spores ranged from 12 to 5,600 
per gram of sample. We detected Encephalitozoon cu-
niculi genotype II in a hip sample (260 spores/g sam-
ple) from 1 patient, and genotype III in a knee sample 
(6.9 spores/g sample) from 1 other patient (Table 

2). Microscopic analysis of Calcofluor M2R–stained 
smears confirmed the presence of spores (2–5 spores 
per slide) in tissue samples obtained from patient nos. 
2 and 29 who tested positive for Encephalitozoon DNA 
(Figure 3). Samples from the other 3 patients were mi-
croscopically negative for spores. Microbiologic tests 
showed bacterial infections within the tissues of 3 
patients: group G beta-hemolytic Streptococcus in the 
knee of patient no. 1, E. faecalis in the knee of patient 
no. 29, and methicillin-resistant S. aureus in the hip of 
patient no. 2; the other 2 patients were clinically clas-
sified as aseptic (Table 2).

Discussion
Primary hip and knee arthroplasty ranks among 
the top 5 most common procedures performed and 
among the top 5 fastest growing procedures each 
year across all surgical disciplines (20). Total joint 
replacement improves function, reduces pain, and 
improves quality of life for patients, and is cost-
effective (21,22). Despite the high success rate of 
modern total joint arthroplasty (23) and technolog-
ic advances designed to extend the lifetime of pri-
mary implants (24–26), modern implant bearings 
and well-fixed components have a finite lifespan 
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Table 1. Sample types, age of patients, surgical procedures, and diagnoses in study of microsporidia (Encephalitozoon cuniculi) in 
patients with degenerative hip and knee disease, Czech Republic* 

Sample type 

Periprosthetic joint infection  Aseptic implant loosening  Other diagnosis 

NP/NS PR/SR/TR 
Mean age 

(SD) NP/NS PR/SR/TR 
Mean age 

(SD) NP/NS PR/SR/TR 
Mean age 

(SD) 
Knees            
 Joint fluid 7/8 4/2/1 72.7 (5.7) NA NA NA NA NA NA 
 Puncture aspirate 9/12 5/2/2 76.3 (8.9) 1/1 0/1/0 74 1/1 1/0/0 78 
 Joint tissue 9/14 5/1/3 73.0 (6.9) NA NA NA NA NA NA 
Hips            
 Joint fluid 11/13 6/2/3 68.3 (9.4) 9/9 5/3/1 69.1 (8.5) NA NA NA 
 Puncture aspirate 7/8 6/0/1 66.9 (12.7) 1/1 1/0/0 74 NA NA NA 
 Joint tissue 10/17 5/2/3 71.9 (6.1) 6/8 5/1/0 70.5 (7.7) 2/2 0/0/2 69.5 (0.5) 
*Samples were collected from immunocompetent patients during May 2020–September 2021 at Bulovka Hospital in Prague, Czech Republic. NA, not 
applicable; NP, number of patients; NS, number of samples; PR, primary revision; SR, secondary revision; TR, third and further revision.  

 

Figure 1. Samples obtained from each patient during revision surgery in study of microsporidia (Encephalitozoon cuniculi) in patients 
with degenerative hip and knee disease, Czech Republic. Samples were collected from immunocompetent patients during May 2020–
September 2021 at Bulovka Hospital in Prague, Czech Republic. Numbers indicate the number of collected samples for each patient. 
Colors indicate the type of revision surgery: yellow, primary revision; orange, secondary revision; red, third and further revision; blue, 
both primary and third and further revision; green, both primary and secondary revision.
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(27). Total joint replacements because of osteoar-
thritis require a revision procedure in 10% of pa-
tients, ≈4% within 10 years of initial surgery (13,14). 
Risk for revision increases in younger, more active 
patients and in those who have a higher body mass 
index (28). The most common reasons for revision 
surgery are infection, fracture around the implant, 
and loosening of the implant, which can occur 
soon after joint replacement or after decades of  
good function (29).

Prosthetic joint infection was detected in 34 
(69.3%) of 49 patients we screened. Gram-positive 
cocci, such as S. aureus, coagulase-negative staphylo-
cocci, and E. faecalis are the major prosthetic joint in-
fection-related microorganisms, after which Gram-
negative bacilli are common (30–32); however, other 
pathogens are often overlooked, leading to an aseptic 
joint diagnosis. Microsporidia are often overlooked, 
fungus-related, obligate intracellular parasites oc-
curring worldwide and infecting various vertebrate 
and invertebrate hosts, including humans (33,34); 17 
species have been reported in humans, causing more 
severe symptoms in immunocompromised persons 
than in immunocompetent counterparts (35,36). 
E. cuniculi was the first microsporidium identi-
fied in mammals and the best-studied, forming the  

foundation of knowledge about microsporidia. E. cu-
niculi is typically described as a chronic, slow-acting 
pathogen and, thus, is considered less virulent than 
other pathogen groups; however, it can multiply 
successfully and extensively without any obvious 
signs of infection in immunocompetent hosts (37–
39). E. cuniculi infects a wide spectrum of host cells, 
including epithelial cells, vascular endothelial cells, 
kidney tubule cells, and can be found in most tis-
sues, having a propensity toward brain and kidneys 
(40). E. cuniculi is responsible for various patholo-
gies depending on the infection site, affecting the 
nervous system as well as the respiratory and diges-
tive tracts and causing hepatitis, peritonitis, pneu-
monitis, cystitis, nephritis, and encephalitis (41,42). 
Most documented cases originated from HIV/AIDS 
patients and transplant recipients. Whereas infection 
with E. cuniculi genotype I and II is common, occur-
rence of genotypes III and IV in humans is rare (43). 
As researchers and clinicians become more aware 
of those pathogens and are able to diagnose infec-
tions caused by them, new associations between mi-
crosporidia parasites and common infections have 
been reported (17,44). Moreover, E. cuniculi is able 
to survive and replicate in a variety of immune cells, 
including resident and migratory macrophages and 
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Figure 2. Phylogenetic analysis 
of Encephalitozoon cuniculi 
genotypes recovered from 
immunocompetent patients in 
study of microsporidia in patients 
with degenerative hip and knee 
disease, Czech Republic. Samples 
were collected from patients during 
May 2020–September 2021 at 
Bulovka Hospital in Prague. Partial 
sequences of 16S rRNA gene, the 
entire internal transcribed spacer 
region, and a partial sequence of 
5.8S rRNA gene were inferred by 
using neighbor-joining analyses, 
and relationships were computed 
by using the Tamura 3-parameter 
method with gamma distribution 
and parametric bootstrap analysis 
of 1,000 replicates in MEGA X 
software (MEGA, https://www.
megasoftware.net). Bold type 
indicates sequences obtained 
in this study, identified by 
patient number. Sequences for 
comparisons were obtained from 
GenBank; accession numbers are 
in brackets. Scale bar indicates 
nucleotide substitutions per site. 
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other phagocytic cells, such as neutrophils, eosino-
phils, monocytes, and dendritic cells; thus, those im-
mune cells might contribute to dissemination of E. 
cuniculi throughout the host organism (45,46).

The most common route of microsporidia trans-
mission is the fecal-oral route; spores are passed in 
the urine or feces of infected persons into the en-
vironment and transmitted mostly through con-
taminated water sources (43). Microsporidia spores 
have been identified in wastewater, and in surface, 
irrigation, and drinking water. Moreover, sever-
al studies have reported foodborne transmission 
through fresh produce, such as strawberries, rasp-
berries, lettuce, celery, parsley, and oranges, in-
cluding orange juice. Recently, E. cuniculi has been 
reported in milk from dairy cows and goats, and 
the possibility of E. cuniculi transmission through 
pasteurized cow’s milk, fermented pork products, 

and fresh goat cheese has been experimentally 
documented (43). Furthermore, infection in the  
respiratory tract suggests airborne transmission by 
contaminated aerosols (43).

E. cuniculi can survive and persist in immu-
nocompetent hosts, even after chemotherapeutic 
treatment (47–49), and a latent infection can be ac-
tivated by inflammation in the host body (9). A role 
for proinflammatory immune cells in the expansion 
of E. cuniculi infection in host tissues has been sug-
gested because of the occurrence of microsporidia in 
inflamed tissues (17) and the targeted migration to-
ward inflammatory foci seen after experimental in-
duction of inflammation (9,10). Thus, the incidence 
of microsporidia infections might be much higher 
than previously reported, and microsporidia might 
represent a neglected etiologic agent for more com-
mon diseases, including prosthetic joint infection. 
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Figure 3. Microscopic analysis of Encephalitozoon cuniculi spores isolated from immunocompetent patients in study of microsporidia 
in patients with degenerative hip and knee disease, Czech Republic. Samples were collected from patients who tested positive for 
Encephalitozoon DNA during May 2020–September 2021 at Bulovka Hospital in Prague. Visualization of E. cuniculi from sample of knee 
joint fluid from patient no. 29 (A) and hip joint fluid from patient no. 2 (B). Arrows indicate E. cuniculi spores stained with Calcofluor M2R 
(Sigma Aldrich, https://www.sigmaaldrich.com) and viewed after fluorescence excitation at 490 nm wavelength. Scale bars are 10 μm.

 
Table 2. Characteristics of immunocompetent patients and patient samples in study of microsporidia (Encephalitozoon cuniculi) in 
patients with degenerative hip and knee disease, Czech Republic* 

Patient 
no. Age, y/sex 

Samples 

Origin Pathology Total/no. positive† Genotype‡ 
No. spores/g 
sample (Ct)§  Microbiology 

1 78/M Knee, PR, puncture 
aspirate, fluid 

PJI 2/2 I 74 (37) Group G beta-hemolytic 
Streptococcus  

29 76/M Knee, TR, 2 puncture 
aspirates, fluid, tissue 

PJI 4/4 I 5,600 (33) Enterococcus faecalis 

33 63/F Knee, PR, fluid, tissue AIL 2/2 III 6.9 (39) Aseptic 
2 75/M Hip, PR, fluid PJI 1/1 II 260 (35) Staphylococcus aureus 

(MRSA) 
7 71/F Hip, PR, fluid, tissue AIL 2/2 I 12 (38) Aseptic 
*Samples were collected during May 2020–September 2021 at Bulovka Hospital in Prague, Czech Republic. AIL, aseptic implant loosening; Ct, cycle 
threshold; MRSA, methicillin-resistant Staphylococcus aureus; PJI, periprosthetic joint infection; PR, primary revision; TR, third and further revision. 
†Total number of samples/number of E. cuniculi-positive samples. 
‡E. cuniculi genotype was determined by nested PCR of partial sequence of the 16S rRNA gene that included the entire internal transcribed spacer. 
§Number of spores was determined by quantitative real-time PCR of a 268-bp region of the E. cuniculi 16S rRNA gene. DNA was isolated from tissue or 
aspirate sediment. 
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We confirmed periprosthetic E. cuniculi infection in 
3 patients who had prosthetic joint infection and 2 
who had aseptic implant loosening. Moreover, the 
molecular data were supported by microscopy in 2 
patients who had the highest spore loads. The other 
3 E. cuniculi PCR-positive patients had negative mi-
croscopic results; those results were likely caused 
by limited sensitivity of microscopy in samples with 
low spore load rather than laboratory contamina-
tion of PCR. Because we obtained uniform results 
from multiple samples from specific patients by us-
ing both PCR and quantitative PCR, it is unlikely 
that contamination occurred in all samples from a 
particular patient at the same time and not in other 
samples. Laboratory contamination was exclud-
ed as a possible reason for our results because the 
samples were taken and PCR was performed under 
sterile conditions by the same trained personnel, 
and the PCR diagnostics workspace is structurally  
divided into separate areas adhering to a one-direc-
tion workflow.

Whether microsporidia infection occurred in the 
affected joint areas before the onset of inflammatory 
processes or whether they entered the affected areas 
secondarily through macrophages or other cells in-
volved in inflammation remains unclear. Neverthe-
less, not only infective agents can induce inflamma-
tion. Implant-derived wear particles can also induce 
host inflammatory responses via opsonization by 
danger-associated molecular pattern molecules and 
recognition by Toll-like receptors (50). Therefore, E. 
cuniculi spores likely were transported to the joints 
within immune cells associated with proinflamma-
tory immune responses.

In conclusion, E. cuniculi can occupy unusual ex-
traintestinal locations, such as joint fluid or tissue, and 
should be considered a contributing cause of joint in-
flammation and arthrosis. However, the role of this 
pathogen in causing osteolysis and subsequent im-
plant loosening needs to be clarified. The presence of 
microsporidia spores and DNA in periprosthetic tissue 
of immunocompetent hosts indicates active infection 
in those patients and should be considered in the histo-
ry of the disease. In addition, microsporidia should be 
considered as a potential cause of periprosthetic osteol-
ysis and implant destabilization after hip replacement.
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Named in honor of Daniel Elmer Salmon, an American veteri-
nary pathologist, Salmonella is a genus of motile, gram-nega-

tive bacillus, nonspore-forming, aerobic to facultatively anaerobic 
bacteria of the family Enterobacteriaceae. In 1880, Karl Joseph Eb-
erth was the first to observe Salmonella from specimens of patients 
with typhoid fever (from the Greek typhōdes [like smoke; deliri-
ous]), which was formerly called Eberthella typhosa in his tribute. 
In 1884, Georg Gaffky successfully isolated this bacillus (later 
described as Salmonella Typhi) from patients with typhoid fever, 
confirming Eberth’s findings. Shortly afterward, Salmon and his 
assistant Theobald Smith, an American bacteriologist, isolated 
Salmonella Choleraesuis from swine, incorrectly assuming that 
this germ was the causative agent of hog cholera. Later, Joseph 
Lignières, a French bacteriologist, proposed the genus name Sal-
monella in recognition of Salmon’s efforts.
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In response to the worldwide COVID-19 pandemic, 
most countries adopted vaccination policies on the 

basis of clinical trial outcomes and scientific evidence 
for vaccine procurement and policy planning frame-
works. Studies suggested that after Omicron vari-
ants emerged, persons receiving 2 COVID-19 vac-
cine doses might not be adequately protected against 
severe illness and death (1–8). Research indicated 
that persons who completed a primary vaccine se-
ries would need a booster dose for better protection 
against new SARS-CoV-2 variants (9–13). Moreover, 

many countries provided several COVID-19 vaccine 
platform combinations (mix-and-match) of mRNA, 
protein subunit, and viral vector–based vaccines. 
However, few studies adopted population-level da-
tasets and national vaccination registry records to 
examine the VE of mix-and-match COVID-19 vac-
cine regimens against SARS-CoV-2 infection, severe 
illness, and death.

Government agencies, including the UK Health 
Security Agency (14), the US Centers for Disease 
Control and Prevention (7), Health Canada (15), and 
the Public Health Agency of Sweden (16), adopt-
ed sampling or regional data to routinely evaluate  
COVID-19 VE in real-world settings. Those authori-
ties review VE for national vaccination strategies to 
improve public policy implementation and provide 
evidence to encourage vulnerable groups and at-risk 
populations to get vaccinated. However, most coun-
tries worldwide have experienced several waves 
of the COVID-19 pandemic, and VE results could 
be affected by natural humoral immunity due to  
SARS-CoV-2 infection among populations. Thus, pre-
vious VE might be biased because of persons who 
were infected and vaccinated, reporting schemes, and 
fundamental distinctions among groups with differ-
ent vaccination statuses.

Taiwan offers various COVID-19 vaccines for the 
public, including mRNA (Pfizer-BioNTech BNT162b2 
[https://www.pfizer.com] and Moderna mRNA-1273 
[https://www.modernatx.com]), protein subunit  
(Medigen MVC-COV1901 [https://www.medigenvac. 
com]), and Novavax NVX-CoV2373 [https://www.
novavax.com]), and viral vector-based vaccines  
(Oxford–AstraZeneca AZD1222 [https://www.astra-
zeneca.com]). In Taiwan, AZD1222 was introduced 
on March 22, 2021, mRNA-1273 on June 8, 2021,  
MVC-COV1901 on August 23, 2021, and BNT162b2 on 
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Taiwan provided several COVID-19 vaccine platforms: 
mRNA (BNT162b2, mRNA-1273), adenoviral vector-
based (AZD1222), and protein subunit (MVC-COV1901). 
After Taiwan shifted from its zero-COVID strategy in April 
2022, population-based evaluation of vaccine effective-
ness (VE) became possible. We conducted an observa-
tional cohort study of 21,416,151 persons to examine 
VE against SARS-CoV-2 infection, moderate and severe 
illness, and death during March 22, 2021–September 
30, 2022. After adjusting for age and sex, we found that 
persons who completed 3 vaccine doses (2 primary, 1 
booster) or received MVC-COV1901 as the primary se-
ries had the lowest hospitalization incidence (0.04–0.20 
cases/100,000 person-days). We also found 95.8% VE 
against hospitalization for 3 doses of BNT162b2, 91.0% 
for MVC-COV1901, 81.8% for mRNA-1273, and 65.7% 
for AZD1222, which had the lowest overall VE. Our 
findings indicated that protein subunit vaccines provide 
similar protection against SARS-CoV-2–associated hos-
pitalization as mRNA vaccines and can inform mix-and-
match vaccine selection in other countries.
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September 22, 2021. Government-funded COVID-19 
vaccines were provided and prioritized by risk groups, 
such as healthcare workers, COVID-19 control staff 
(e.g., frontline health authority, customs, immigration, 
and quarantine staff, and security workers), caregivers 
in social welfare facilities, and high-risk groups (such 
as persons receiving kidney dialysis, older adults, 
pregnant women, and patients with rare diseases, cata-
strophic illnesses, or chronic diseases). No preferential 
recommendations for specific vaccine platforms were 
offered, and COVID-19 vaccines were provided to 
risk groups on the basis of availability. Persons could 
choose and reserve any available COVID-19 vaccine 
platforms at the vaccination stations.

In Taiwan, after authorities investigated  
COVID-19 cases, most were classified as imported, 
and few autochthonous cases were reported until 
April 2022. Community outbreaks did not begin un-
til May 2021 and all were controlled within 3 months 
(17,18). Moreover, the national COVID-19 vaccina-
tion program was initiated in March 2021 (19), 
and vaccine coverage was <1% of the population 
when community outbreaks occurred in May 2021. 
Those outbreaks were mainly an Alpha subvariant 
of SARS-CoV-2 and was well controlled under the 
country’s zero-COVID policy. The Taiwan Centers 
for Disease Control (Taiwan CDC) conducted a se-
roprevalence survey on blood donors whose sam-
ples were obtained during January–April 2022. The 
national nucleocapsid protein positivity rate was 
0.00%–0.94%, showing that the population main-
tained a low level of COVID-19 infection. When a 
major outbreak of the SARS-CoV-2 Omicron BA.2 
variant began in April 2022, the population could be 
regarded as SARS-CoV-2 immune naive. Thus, eval-
uating the nationwide VE of COVID-19 vaccines and 
vaccine combinations among a population-based co-
hort became realistic after April 2022.

We launched this study and used national vac-
cination registration records and a mandatory pa-
tient-level COVID-19 reporting dataset to estimate 
real-world VE of mRNA, protein subunit, and viral 
vector-based vaccines against infection, severe dis-
ease, and death in this predominantly infection-naive 
population during Omicron BA.2 variant predomi-
nance in Taiwan, mainly April–September 2022. 
This study also aimed to provide an overview and 
review of the performance of various COVID-19 vac-
cine platforms and vaccine combinations against the 
SARS-CoV-2–associated severe illness and to provide 
evidence for the vaccination strategy and guidance 
for areas and countries where various vaccine types 
are available.

Methods

Ethics Considerations
Taiwan CDC performed this study as a public policy 
analysis and evaluation. According to the Communi-
cable Disease Control Act, Personal Data Protection 
Act, and regulations issued by the Ministry of Health 
and Welfare (reference no. 1010265083), the require-
ment of informed consent was waived from the study 
subjects because data were collected and obtained 
from Taiwan CDC. This study was approved by the 
Taiwan CDC institutional review board for health 
policy analysis research (reference no. 112103) and re-
ceived an exempt review certificate of approval.

Study Design and Data Sources
We conducted a population-based retrospective co-
hort study to assess the VE of mRNA (BNT162b2 and 
mRNA-1273), protein subunit (MVC-COV1901), and 
vector-based (ChAdOx1-S -AZD1222) COVID-19 vac-
cines in Taiwan during March 22, 2021–September 30, 
2022. Our analysis included citizens and permanent 
residents of Taiwan. 

Registration in the National Immunization In-
formation System (NIIS) is mandatory for all vacci-
nated persons and includes patient-level records of 
each government-funded vaccine administered. We 
retrieved the official database of the NIIS, which in-
cluded vaccine types, vaccination dates of each dose, 
and vaccine combinations (i.e., mix-and-match) sta-
tuses for all vaccinees. We obtained information on 
SARS-CoV-2 infection notifications, moderate and se-
vere illness (i.e., hospitalization), and death outcomes 
from the National Infectious Disease Reporting Sys-
tem (NIDRS). NIDRS also included information on el-
igible persons who were not vaccinated (i.e., received 
zero doses). At enrollment, NIIS and NDRS collected 
demographic information, such as age and sex, and 
information on enrollees’ residential districts. On No-
vember 10, 2022, we retrieved analytic datasets from 
Taiwan CDC systems that stored integrated data that 
integrated NIIS, NIDRS, and case information. To en-
sure that persons were alive at the start of the cohort, 
we verified personal identification numbers against 
the death registry and census database from the Min-
istry of the Interior.

The second booster (i.e., fourth dose) campaign 
for certain older adults and vulnerable groups began 
on May 16, 2022. Because persons who had 2 booster 
doses might have stronger immunity, we excluded 
persons whose records showed they had received a 
fourth dose (i.e., second booster) to avoid any pos-
sible bias. In addition to MVC-COV1901, Novavax 
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(Nuvaxovid) is also a protein subunit vaccine. How-
ever, Novavax had limited availability and only spe-
cific population groups were eligible to receive it, 
so most persons could not receive Novavax in their 
primary vaccine series; thus, we excluded persons 
vaccinated with Novavax. Most COVID-19 case noti-
fications occurred during April–September 2022, but 
the bivalent Moderna vaccine was not provided until 
September 2022; therefore, we excluded persons who 
received the Moderna bivalent vaccine. Of note, VE 
comparison of monovalent and bivalent vaccines was 
not the main goal of the study. 

Statistical Analysis
Although the COVID-19 vaccine program launched 
on March 22, 2021, and most cases occurred af-
ter April 2022, sporadic outbreaks and community 
transmission still occurred and were attributed to 
imported cases during the zero-COVID strategy 
timeframe. Therefore, we estimated the overall VE 
of COVID-19 vaccines and aimed to provided VE of 
various mix-and-match vaccine platforms in Taiwan 
during March 22, 2021–September 30, 2022. More-
over, to address the timeframe between vaccination 
dates and events, we estimated the incidence rate and 
explored time from vaccination to infection, hospi-
talization, or death. We removed the total follow-up 
days and at-risk population if the outcome of inter-
est occurred. We also explored incidence rates of out-
comes of interest (i.e., confirmed infection, hospital-
ization, and death) for comparison. We considered 
persons protected at 14 days after a vaccine dose, the 
time required to develop an immune response. We 
calculated the person-days between the date of vac-
cination and event dates for infection, hospitalization, 
or death (Appendix, https://wwwnc.cdc.gov/EID/
article/30/3/23-0893-App1.pdf).

We used logistic regression models to calculate  
odds ratios (ORs) and 95% CIs of hospitalization 
and death outcomes. We included vaccination status  
in the analysis and considered the demographic  

characteristics of sex and age as covariates. We defined 
VE as (1 – adjusted OR) × 100% to estimate the risk 
probability of outcomes of interest among persons 
who had 0, 1, 2, or 3 vaccine doses. We compared VEs 
of persons who had 1–3 vaccination doses to unvacci-
nated (i.e., 0 vaccines) persons as the reference group. 
We also measured the absolute VE of various vaccine 
combinations against an unvaccinated reference (con-
trol) group. We excluded persons who received >4 
vaccine doses from the analysis to avoid bias.

We stratified VE estimates by 3 age groups, all 
ages, 18–64 years of age, and >65 years of age, and by 
vaccine platform combinations (i.e., mix-and-match). 
Taiwan CDC guidelines did not restrict the brand 
of vaccines used as the primary series and encour-
aged eligible groups to receive vaccines when prod-
ucts were available. After a physician’s consultation, 
persons could choose their vaccine type and brand 
(Appendix). Because the array of combinations was 
infinite, to reduce confusion, we limited our analy-
sis to 27 specific vaccine combinations, determined 
by the number of persons vaccinated. We performed 
all analyses in SAS version 9.4 (SAS Institute, Inc., 
https://www.sas.com) and SPSS Statistics 26.0 (IBM, 
https://www.ibm.com).

Results
Our analysis included 23,933,482 unique persons, 
from which 2,516,382 persons were excluded because 
they received >4 vaccine doses during the study peri-
od; 949 persons were excluded because of incomplete 
national immunization and reporting system records. 
We found that 3,373,548 (15.8%) persons were unvac-
cinated, 1,183,138 (5.5%) received 1 dose, 3,287,659 
(15.4%) received 2 doses, and 13,571,806 (63.4%) com-
pleted 3 doses (Table). The mean age was 41.0 years 
for unvaccinated persons, 28.7 years for persons with 
1 vaccine dose, 31.8 years for persons with 2 doses, 
and 42.5 years for persons with 3 doses.

SARS-CoV-2 infection rates were 24.3% for un-
vaccinated (0 dose) persons, 31.4% for persons with 
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Table. Vaccination status and outcomes in a population-based evaluation of vaccine effectiveness against SARS-CoV-2 infection, 
severe illness, and death, Taiwan 

Vaccination status and outcomes Total population Unvaccinated 
No. doses 

1 2 3 
No. (%) cases  21,416,151 (100) 3,373,548 (15.8) 1,183,138 (5.5) 3,287,659 (15.4) 13,571,806 (63.4) 
Mean age (SD) 39.9 (21.5) 41.0 (30.6) 28.7 (25.7) 31.8 (22.4) 42.5 (16.8) 
Sex 

    
 

 M 10,644,720 1,720,573 644,365 1,741,738 6,538,044 
 F 10,771,431 1,652,975 538,773 1,545,921 7,033,762 
SARS-CoV-2 infection 

     

 No. confirmed cases (%) 5,830,809 (27.2) 819,991 (24.3) 371,202 (31.4) 903,475 (27.5) 3,736,141 (27.5) 
COVID-19 prognosis 

     

 No. moderate and severe cases (%) 28,840 (0.13) 14,674 (0.43) 2,575 (0.22) 3,700 (0.11) 7,891 (0.06) 
 No. deaths (%) 10,667 (0.05) 5,342 (0.16) 989 (0.08) 1,305 (0.04) 3,031(0.02) 
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1 dose, 27.5% for persons with 2 doses, and 27.5% for 
persons with 3 doses. We found that 0.43% of unvac-
cinated persons had moderate to severe illness, which 
we defined by hospitalization, and 0.16% died. In 
contrast, 0.22% of 1-dose vaccinees were hospitalized 
and 0.08% died; 0.11% of 2-dose vaccinees were hos-
pitalized and 0.04% died. Among persons who com-
pleted 3 doses, 0.06% were hospitalized and 0.02% 
died, which was the lowest death rate in our cohort.

We categorized 27 groups of vaccine combina-
tions because of the complexity of mix-and-match 
combinations; we compiled the number of cases and 
patient characteristics and calculated the incidence 
of SARS-CoV-2 infection, hospitalization, and death 
(Appendix Table 1). Most persons who completed a 

3-dose regimen received a combination of vaccines, 
most (3,769,921 [17.6%]) of which were 2 doses of 
AZD1222 and 1 dose of mRNA-1273.

For hospitalization risk comparison among 3-dose 
mix-and-match vaccine recipients, persons receiving 
MVC-COV1901 as the primary series had the lowest 
hospitalization incidence of 0.04–0.20/100,000 per-
son-days, followed by BNT162b2 (0.06–0.20/100,000 
person-days), mRNA-1273 (0.40–0.66/100,000 per-
son-days), and AZD1222 (0.06–0.20/100,000 person-
days). We observed a similar pattern in among pa-
tient deaths.

Among 3-dose vaccinees using the same brand, 
3 doses of MVC-COV1901 had the lowest infec-
tion incidence (116.05 cases/100,000 person-days), 
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Figure 1. Vaccine effectiveness against hospitalization among all age groups in a population-based evaluation of vaccine effectiveness 
against SARS-CoV-2 infection, severe illness, and death, Taiwan, March 22, 2021–September 30, 2022. The study investigated various 
vaccine types: mRNA (Pfizer-BioNTech BNT162b2 [https://www.pfizer.com] and Moderna mRNA-1273 [https://www.modernatx.com]), 
protein subunit (Medigen MVC-COV1901 [https://www.medigenvac.com]), and viral vector–based vaccines (Oxford-AstraZeneca 
AZD1222 [https://www.astrazeneca.com]). The forest plot demonstrates effectiveness of different vaccination regimens status against 
moderate and severe illness defined by hospitalization for all age groups. Red dots indicate percentage effectiveness; bars indicate 95% 
CIs. AZ, AstraZeneca vaccine. 
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followed by mRNA-1273 (138.11 cases/100,000 
person-days), BNT162b2 (149.26 cases/100,000 
person-days), and AZD1222 (152.62 cases/100,000 
person-days). For COVID-19–associated hospitaliza-
tion outcomes, 3 doses of BNT162b2 had the lowest 
incidence (0.06/100,000 person-days), followed by 
MVC-COV1901 (0.20/100,000 person-days), mRNA-
1273 (0.48/100,000 person-days), and AZD1222 
(0.71/100,000 person-days). We observed a similar 
pattern among patient deaths.

We categorized 3 age groups, all ages, 18–64 
years of age, and >65 years of age, to show VE against  
COVID-19–associated hospitalization and death (Ap-
pendix Tables 2, 3). We used unvaccinated persons as 
the reference group and adjusted for age and sex when 
calculating VE in multivariate models (Figures 1–6). 

For VE against hospitalization, a booster dose gener-
ally provided higher protection (Figures 1–3). VE in 
persons who received mRNA vaccines as a primary 
series showed a similar pattern to persons who re-
ceived protein-based vaccines as a primary series. We 
noted a 95.8% (95% CI 95.0%–96.4%) point estimate of 
VE for 3 doses of BNT162b2, an 81.8% (95% CI 80.8%–
82.7%) point estimate for mRNA-1273, a 91.0% (95% CI 
90.9%–92.6%) point estimate for MVC-COV1901, and a 
lower VE (65.7%; 95% CI 42.1%–79.9%) for 3 doses of 
AZD1222. In contrast, AZD1222 plus 2 doses of mRNA 
vaccines provided a higher (90.8%–93.1%) VE against 
hospitalization than 3 doses of AZD1222.

Among persons 18–64 years of age receiving only 
1 dose, we observed no statistically significant pro-
tection against death for AZD1222 (−29.5%; 95% CI 

482 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024

Figure 2. Vaccine effectiveness against hospitalization among persons 18–64 years of age in a population-based evaluation of vaccine 
effectiveness against SARS-CoV-2 infection, severe illness, and death, Taiwan, March 22, 2021–September 30, 2022. The study 
investigated various vaccine types: mRNA (Pfizer-BioNTech BNT162b2 [https://www.pfizer.com] and Moderna mRNA-1273 [https://www.
modernatx.com]), protein subunit (Medigen MVC-COV1901 [https://www.medigenvac.com]), and viral vector–based vaccines (Oxford-
AstraZeneca AZD1222 [https://www.astrazeneca.com]). The forest plot demonstrates effectiveness of different vaccination regimens 
status against moderate and severe illness defined by hospitalization for persons 18–64 years of age. Red dots indicate percentage 
effectiveness; bars indicate 95% CIs. AZ, AstraZeneca vaccine. 
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−77.9% to –5.7%), mRNA-1273 (11.8%; 95% CI −10.4% 
to 29.6%), BNT162b2 (65.5%; 95% CI 47.8%–77.2%), 
and MVC-COV1901 (19.4%; 95% CI –21.9% to 46.7%) 
(Figure 2). We observed a higher level of protection 
with 2 doses of mRNA; BNT162b2 reached 79.1% 
(95% CI 72.4%–84.25%) and mRNA-1273 reached 
72.0% (95% CI 63.0%–78.7%). VE for protein-based 
vaccine MVC-COV1901 was 62.6% (95% CI 43.9%–
75.1%). By comparison, the VE was the lowest, 37.3% 
(95% CI 19.3%–51.3%), for 3 AZD1222 doses.

We found higher VE was obtained among persons 
18–64 years of age who had a booster dose. In addi-
tion, 3 doses of mRNA or protein-based vaccines pro-
vided similar protection against COVID-19–associat-
ed death: 94.9% (95% CI 92.2%–96.7%) for BNT162b2, 

92.0% (95% CI 89.7%–93.8%) for mRNA-1273, and 
92.0% (95% CI 86.1%–95.4%) for MVC-COV1901 (Fig-
ure 2). The combination of 1 AZD1222 and 2 doses of 
mRNA vaccines provided high (81.9%–93.5%) protec-
tion, as well. However, we observed little protection 
from death after 3 doses of AZD1222, with a point es-
timate of 78.4% (95% CI −53.6% to 97.0%).

For persons >65 years of age who received 3 
vaccine doses, 3 doses of mRNA or protein-based 
vaccines provided similar protection against death: 
86.6% (95% CI 85.2%–87.9%) for mRNA-1273, 83.6% 
(95% CI 74.3%–89.6%) for BNT162b2, and 85.2% (95% 
CI 77.5%–90.3%) for MVC-COV1901 (Figure 6). How-
ever, 3 doses of AZD1222 provided low protection 
against death and had a point estimate of 21.6% (95% 
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Figure 3. Vaccine effectiveness against hospitalization among persons >65 years of age in a population-based evaluation of vaccine 
effectiveness against SARS-CoV-2 infection, severe illness, and death, Taiwan, March 22, 2021–September 30, 2022. The study 
investigated various vaccine types: mRNA (Pfizer-BioNTech BNT162b2 [https://www.pfizer.com] and Moderna mRNA-1273 [https://www.
modernatx.com]), protein subunit (Medigen MVC-COV1901 [https://www.medigenvac.com]), and viral vector-based vaccines (Oxford-
AstraZeneca AZD1222 [https://www.astrazeneca.com]). The forest plot demonstrates effectiveness of different vaccination regimens 
status against moderate and severe illness defined by hospitalization for persons >65 years of age. Red dots indicate percentage 
effectiveness; bars indicate 95% CIs. AZ, AstraZeneca vaccine. 
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CI −88.8% to 67.5%). However, because of the rela-
tively small population, we did not examine the com-
bination of 1 AZD1222 and 2 doses of mRNA vaccines 
and other brands for this age group.

Discussion
We adopted population-based data to evaluate ef-
fectiveness for different COVID-19 vaccine platforms 
among a predominately immune-naive population 
in Taiwan, which had minimal circulation of SARS-
CoV-2 before March 2022. In April 2022, a major epi-
demic of Omicron BA.2 variant led the government 
to abandon its zero-COVID policy, which had been in 
effect since January 2020 (20). The nationwide vaccine 
campaign was initiated in March 2021. However, be-
fore the end of March 2022, the cumulative confirmed 
domestic cases were <0.3% of the total population. 

Therefore, evaluating nationwide COVID-19 vaccine 
effectiveness among this immune-naive population 
became possible in April 2022. According to nation-
wide community subvariant surveillance during 
April 2021–September 2022, the BA.2 Omicron SARS-
CoV-2 variant predominated and accounted for 85%–
90% of all subvariants; the rest were BA.5, BA.2.75, and 
others (21). Previous studies indicated that COVID-19 
infection could induce natural immunity that can be 
as effective as vaccines for certain amount of time af-
ter infection (22–25). However, our study offers base-
line immunity values of the effectiveness of various 
vaccine platform combinations, primarily induced  
by vaccines. In addition, our findings provide fur-
ther data on vaccine-induced immunity against Omi-
cron variants and VE of various mix-and-match vac-
cine platforms, rather than immunity from previous  
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Figure 4. Vaccine effectiveness against death among all age groups in a population-based evaluation of vaccine effectiveness against 
SARS-CoV-2 infection, severe illness, and death, Taiwan, March 22, 2021–September 30, 2022. The study investigated various vaccine 
types: mRNA (Pfizer-BioNTech BNT162b2 [https://www.pfizer.com] and Moderna mRNA-1273 [https://www.modernatx.com]), protein 
subunit (Medigen MVC-COV1901 [https://www.medigenvac.com]), and viral vector-based vaccines (Oxford-AstraZeneca AZD1222 
[https://www.astrazeneca.com]). The forest plot demonstrates effectiveness of different vaccination regimens status against death for all 
age groups. Blue diamonds indicate percentage effectiveness; bars indicate 95% CIs. AZ, AstraZeneca vaccine. 
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natural infection or a hybrid combination of protec-
tive effectiveness from vaccination and infection.

We found that persons who completed 3 vac-
cine doses and received mRNA platform vaccines 
(mRNA-1273 and BNT162b2) as the primary series 
had VE against COVID-19–associated hospitalization 
of 80.0%–95.9%, and the VE against COVID-19–as-
sociated death was 80.3%–96.1%. For persons whose 
primary series doses were the protein subunit plat-
form MVC-COV1901, VE against hospitalization was 
91.0%–96.6%, and the VE against death was 89.5%–
96.2%. For persons whose primary series doses were 
vector-based AZD1222, the VE against hospitaliza-
tion was 62.0%–73.9%, and the VE against death was 
36.7%–65.8%. The VE of mRNA and protein subunit 
vaccines against COVID-19 hospitalization and death 

were similar, but the VE of the vector-based vaccine 
was lower (Figures 1–6).

A randomized, double-blind, active-controlled 
trial was conducted in Paraguay to evaluate immu-
nogenicity of the protein subunit vaccine (26). Results 
from that study showed that MVC-COV1901 exhibit-
ed superiority in neutralizing antibody titers and non-
inferiority of seroconversion rates compared with the 
AZD1222 (26). A study on the protein recombinant 
vaccine NVX-CoV2373 (Novavax) in the general pop-
ulation of Italy found that VE against symptomatic  
COVID-19 was 31% (95% CI 16%–44%) in partially 
vaccinated (1 dose only) persons and 50% (95% CI 
40%–58%) in fully vaccinated (2 doses) persons (27). 
Neither of those studies of protein vaccines reported 
VE against hospitalization and death. Our research 
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Figure 5. Vaccine effectiveness against death among persons 18–64 years of age in a population-based evaluation of vaccine 
effectiveness against SARS-CoV-2 infection, severe illness, and death, Taiwan, March 22, 2021–September 30, 2022. The study 
investigated various vaccine types: mRNA (Pfizer-BioNTech BNT162b2 [https://www.pfizer.com] and Moderna mRNA-1273 [https://www.
modernatx.com protein subunit (Medigen MVC-COV1901 [https://www.medigenvac.com]), and viral vector–based vaccines (Oxford-
AstraZeneca AZD1222 [https://www.astrazeneca.com]). The forest plot demonstrates effectiveness of different vaccination regimens 
status against death for persons 18–64 years of age. Blue diamonds indicate percentage effectiveness; bars indicate 95% CIs. AZ, 
AstraZeneca vaccine. 
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might add insights and provide a reference for coun-
tries adopting MVC-COV1901 vaccines.

Our study provides additional information about 
VE among specific age groups and guidance for per-
sons who might need second booster doses for better 
immunity, including persons whose primary series 
doses were AZD1222. For persons 18–64 years of age, 
our findings suggested that VE against COVID-19–
associated hospitalization averaged ≈90%. However, 
VE against hospitalization and death for persons 
who received AZD1222 as primary series doses was 
lower than for those who received mRNA and pro-
tein subunit platform vaccines, suggesting vaccine-
induced immunity waned more quickly for AZD1222 
than for other vaccine types. That finding also might 
suggest that AZD1222 was not a proper choice for 

booster doses to induce sufficient immunity against 
SARS-CoV-2 Omicron variant, which is similar to 
a finding published by UK Health Security Agency 
(28). Our results indicated persons 18–64 years of age 
who completed 3 doses might have sufficient protec-
tion because VE against hospitalization was 80.9%–
97.6% for that group, and the VE against death was 
78.4%–95.7%. For persons >65 years of age, our find-
ings indicated that persons whose primary series was 
AZD1222 had a VE against COVID-19–associated 
hospitalization ranging from −23.6% to 34.5%, which 
was much lower than for persons receiving mRNA 
or subunit protein vaccine. Real-world data from Bra-
zil showed similar results; among persons >60 years 
of age, VE against hospitalization for those receiving 
AZD1222 was lower than for those receiving mRNA 

Figure 6. Vaccine effectiveness against death among persons >65 years of age in a population-based evaluation of vaccine 
effectiveness against SARS-CoV-2 infection, severe illness, and death, Taiwan, March 22, 2021–September 30, 2022. The study 
investigated various vaccine types: mRNA (Pfizer-BioNTech BNT162b2 [https://www.pfizer.com] and Moderna mRNA-1273 [https://www.
modernatx.com]), protein subunit (Medigen MVC-COV1901 [https://www.medigenvac.com]), and viral vector–based vaccines (Oxford-
AstraZeneca AZD1222 [https://www.astrazeneca.com]). The forest plot demonstrates effectiveness of different vaccination regimens 
status against death for persons >65 years of age. Blue diamonds indicate percentage effectiveness; bars indicate 95% CIs. AZ, 
AstraZeneca vaccine.
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platform, and waning immunity was reported (29). 
Future studies could explore whether persons receiv-
ing AZD1222 are at higher risk for waning immunity, 
hospitalization, and death compared with persons re-
ceiving other vaccine platforms.

The World Health Organization Strategic Advi-
sory Group of Experts updated COVID-19 vaccina-
tion guidance in March 2023 (30). The advisory group 
indicated high-priority groups, which were mainly 
evaluated on the basis of risk for severe COVID-19 
and death. Our study suggested that the protection 
and immunity induced by vaccines among persons 
>65 years of age might not be sufficient, which is 
supported by previous studies in real-world settings 
(28,31,32). Therefore, the priority for future vaccine 
campaigns should emphasize persons >65 years 
of age, especially those whose primary series vac-
cines were AZD1222. The policy implication is that 
if a nationwide vaccine campaign was implemented 
with limited resources, the government could focus 
on the age groups and vaccine types that had lower 
VE rather than advocating for vaccination of the 
general population.

Our findings suggested that VE of the protein 
subunit vaccine MVC-COV1901 provides similar pro-
tection against COVID-19–associated hospitalization 
and death as mRNA vaccines BNT162b2 and mRNA-
1273. Because both vaccine types could provide ef-
fective immunity against Omicron BA.2–associated 
severe outcomes, SARS-CoV-2 vaccine guidance in 
Taiwan recommend those vaccine types (33). VE of 
protein subunit and mRNA vaccines were also recog-
nized by Indonesia, Palau, New Zealand, Belize, So-
maliland, Thailand, Estonia, Paraguay, Malaysia, and 
Saint Kitts and Nevis (33). The similar VE of protein 
subunit and mRNA vaccines might provide the pub-
lic with alternative vaccine types for primary series or 
booster shots. It also provides alternatives other than 
mRNA vaccines. 

We provide population-level VE evaluation of 
protein subunit vaccines against severe outcomes. 
However, other studies have reported the efficacy 
a similar vaccine, NVX-CoV2373 (Novavax), from 
clinical trials and VE against symptomatic infection 
(27,34). For public implications, the results from this 
study could enhance the autonomy of individual 
preferences. In addition, because the Medigen MVC-
COV1901 vaccine was locally innovated and pro-
duced in Taiwan, fewer issues of availability might 
arise in the evolving pandemic.

The first limitation of this study is that in esti-
mating VE, although we used age and sex for model 
adjustments, information on underlying conditions, 

medication, treatment status and history, health be-
haviors, and potential unmeasurable factors were un-
available for individual cases; thus, we could not in-
clude those confounding factors as variables. Second, 
because of variations in healthcare seeking behaviors, 
notification records might be underestimated, espe-
cially for mild or asymptomatic cases. Third, Taiwan 
CDC received hospitalization records from the clini-
cal status, documentation, notification and investiga-
tion, and case reports from the NIIS and NIDRS rather 
than mandatory reporting; thus, moderate and severe 
illness (hospitalization) could have been underre-
ported. Fourth, an expert committee reviewed each 
death case to verify whether the death was SARS-
CoV-2–associated according to medical records and 
death certificates obtained by national cause of death 
registry. Therefore, the death case numbers might be 
underestimated compared with studies that defined 
SARS-CoV-2 death within a specific timeframe.

In summary, this study provides scientific evi-
dence for countries that use several COVID-19 vaccine 
platform combinations (mix-and-match) of mRNA, 
protein subunit, and viral vector-based vaccines. The 
study identified which vaccine combinations have 
lower VE and might require additional booster shots 
or attention. We found that persons who received 
AZD1222 as their primary series vaccines might not 
be adequately protected against COVID-19–associ-
ated hospitalization and death, even if they received 
a booster dose. We also found that the protein subunit 
vaccine MVC-COV1901 provided similar protection 
against severe SARS-CoV-2 outcomes as mRNA vac-
cines. Our findings can help inform vaccine selection 
for various age groups and at-risk populations during 
future COVID-19 vaccination campaigns, especially if 
resources are limited. 
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Globally, the most common infectious cause of 
death among children 1–59 months of age is 

lower respiratory tract infection (1). Despite vaccine 
availability, Streptococcus pneumoniae causes a sub-
stantial proportion of severe pneumonia cases, at-
tributed to 18.3% of severe pneumonia episodes and 
32.7% of all pneumonia deaths in children globally (2). 
Pneumonia disease burden is highest among younger  
children and in certain regions such as southern Asia 
and Africa (2).

Mongolia is a lower-middle-income country 
in central Asia. Half of the Mongolia population of 
3.3 million live in the capital city of Ulaanbaatar (3). 
Similar to other low- and middle-income countries 
(LMICs), several demographic and socioeconomic 
factors in Mongolia increase the risk for childhood 

pneumonia (4). Rapid urbanization with expansion 
of informal living areas and coal use during winter 
has resulted in poor air quality in Ulaanbaatar (5). 
Air pollution exacerbates respiratory diseases such as 
asthma and increases the risk for pneumonia (6).

In the past 2 decades, pneumococcal conjugate 
vaccines (PCVs) have had a substantial public health 
effect globally; effectiveness against hospitalization 
for invasive pneumococcal disease, clinical pneu-
monia, and radiologically confirmed pneumonia 
has been demonstrated (7,8). Modeling has estimat-
ed that, in children <5 years of age, introduction of 
13-valent PCV (PCV13) resulted in a reduction of 175 
million cases of pneumococcal disease and 625,000 as-
sociated deaths worldwide over 10 years (9). Among 
those cases, 14 million illnesses and 374,550 deaths 
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Starting in June 2016, the 13-valent pneumococcal con-
jugate vaccine (PCV13) was introduced into the routine 
immunization program of Mongolia by using a 2+1 dosing 
schedule, phased by district. We used prospective hospi-
tal surveillance to evaluate the vaccine’s effect on pneu-
monia incidence rates among children 2–59 months of age 
over a 6-year period. Of 17,607 children with pneumonia, 
overall adjusted incidence rate ratios showed decreased 
primary endpoint pneumonia, very severe pneumonia, 
and probable pneumococcal pneumonia until June 2021. 

Results excluding and including the COVID-19 pandemic 
period were similar. Pneumonia declined in 3 districts that 
introduced PCV13 with catch-up campaigns but not in the 
1 district that did not. After PCV13 introduction, vaccine-
type pneumococcal carriage prevalence decreased by 
44% and nonvaccine-type carriage increased by 49%. 
After PCV13 introduction in Mongolia, the incidence of 
more specific pneumonia endpoints declined in children 
2–59 months of age; additional benefits were conferred by 
catch-up campaigns.



Effect of PCV among Children, Mongolia, 2015–2021

resulted from pneumococcal pneumonia (9); how-
ever, 6 countries in Asia have yet to introduce PCV 
into their national immunization programs, and in 
2021, >25 million children in those regions still did 
not have access to the vaccines (10). Data from Asia 
with regard to pneumonia burden and PCV effect are 
lacking; only 2 studies have demonstrated the effect 
of PCV13 (11,12).

Starting in 2016, PCV13 was introduced into the 
routine infant immunization program of Mongolia, 
phased by district, in the context of an expanded 
pneumonia surveillance program to monitor vaccine 
effect (13). Baseline data estimated that clinical pneu-
monia incidence among children 2–59 months was 
31.8 cases/1,000 population and for severe pneumo-
nia was 19.2 cases/1,000 population (14). To ensure 
sustainability of the program in Mongolia, PCV13 
was introduced in stages because the country was 
transitioning from Gavi funding (15). 

Our study goal was to estimate the effect of PCV13 
introduction on clinical and radiologic pneumonia 
endpoints among hospitalized children 2–59 months 
of age living in 4 districts of Ulaanbaatar, Mongolia, 
over a 6-year period. The study was approved by the 
Medical Ethics Review Committee at the Mongolian 
Ministry of Health and the Royal Children’s Hospital 
Human Research Ethics Committee (HREC 33203). 
Written informed consent was obtained from all 
parents/caregivers for enrolled children before any 
study procedures were conducted.

Methods

Study Setting
Expanded hospital-based pneumonia surveillance 
was initiated in 4 districts of Ulaanbaatar in April 
2015 as previously described (13,14). Mongolia in-
troduced PCV13 into the national immunization pro-
gram in a 2+1 schedule (2, 4, and 9 months) by district: 
June 2016 (Songinokhairkhan [SKD] and Sukhbaatar 
[SBD]), July 2017 (Bayanzurkh [BZD]), and March 
2018 (Chingeltei [CHD]). Catch-up campaigns were 
instituted in the districts in which PCV13 was intro-
duced in 2016 and 2017 (13,14). During 2017–2021, 
PCV13 coverage among the target age group from all 
introduced districts was reported to be 95%–98% (16).

Study Population and Design
During April 2015–June 2021, we enrolled children 
2–59 months of age who were admitted to 1 of 4 four 
participating district hospitals (or the tertiary hos-
pital if they resided in one of the relevant districts) 
and met the specific study case definition for clinical 

pneumonia. We excluded patients with bronchiolitis 
and bronchitis. Protocol details have been previously  
published (13) (Appendix, https://wwwnc.cdc.gov/
EID/article/30/3/23-0864-App1.pdf). Blood samples,  
nasopharyngeal swab samples, and chest radio-
graphs were collected for all enrolled patients or for 
whom consent was provided. To ensure that no eli-
gible patients were missed, dedicated study staff en-
sured that patients were correctly enrolled by clinical 
hospital staff.

The primary study outcome was World Health 
Organization (WHO)–defined primary endpoint 
pneumonia (PEP) (17). Secondary outcomes were 
clinical pneumonia (all cases); severe pneumonia 
(WHO 2005 case definition [18]); very severe pneumo-
nia (severe cases complicated by empyema, intensive 
care unit admission, persistent severe disease after 
discharge, hypoxia, or death [14]); hypoxic pneu-
monia (oxygen saturation <90%); probable pneu-
mococcal pneumonia (PPP) (19) (elevated C-reactive 
protein with either PEP [19] or high pneumococcal 
nasopharyngeal carriage); or definite pneumococcal 
pneumonia (positive blood or pleural fluid culture) 
and pneumococcal carriage (13).

Sample Collection and Laboratory Procedures
We adhered to WHO recommended methods for 
nasopharyngeal sample collection, handling, and 
transport (20). We tested nasopharyngeal swab sam-
ples for pneumococci by using lytA real-time quan-
titative PCR and molecular serotyping by DNA mi-
croarray (Appendix) (21). We tested 1,000 patients/
year for pneumococci, including all patients with 
PEP (primary objective) and a random sample of re-
maining patients.

Statistical Analyses
We summarized categorical variables with frequency 
counts and percentages and demographic variables 
by district and overall. To determine changes before 
and after PCV13 introduction, we compared charac-
teristics of children during the 2 periods. We calcu-
lated crude annual incidence rates for April–March 
because surveillance started in April 2015 and pneu-
monia was highly seasonal and most cases were iden-
tified during winter. We obtained annual population 
estimates for denominators from the Mongolian Min-
istry of Health. We calculated CIs for incidence esti-
mates by using a Poisson distribution. We based the 
definitions of pre-PCV13 and post-PCV13 periods on 
month of vaccine introduction at the district level. We 
calculated crude incidence rates and incidence rate 
ratios (IRRs) comparing pre-PCV13 and post-PCV13 
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periods for all patients and stratified them by district 
and age group.

We calculated adjusted IRRs (aIRRs) for differ-
ent pneumonia endpoints comparing pre-PCV13 and 
post-PCV13 periods by using negative binomial re-
gression with separate models for data until February 
2020 (excluding the COVID-19 pandemic period) and 
June 2021 (end of study). All models included terms 
for PCV13 introduction, district, age group, and a 
categorical variable for each calendar month elapsed 
(to account for secular trends), with log-transformed 
population denominators included as an offset. To 
allow for a differential effect between districts, we 
included an interaction term between PCV13 and 
district for district-specific effects. The model coef-
ficients were exponentiated to obtain IRRs with 95% 
CIs. We calculated percent reduction in pneumonia 
rates as (1 – IRR) × 100%. We conducted 2 sensitivity 
analyses for IRR calculations. We first introduced a 
1-year lag period for effect of PCV introduction and 
then stratified IRRs by age group (2–23 months and 
24–59 months).

We used univariable and multivariable log-bino-
mial regression to estimate crude and adjusted prev-
alence ratios (aPR) for overall, PCV13-type and non-
PCV13–type prevalence of pneumococcal carriage. 
To adjust prevalence ratios, we used a common set 
of confounders, selected by using a directed acyclic 
graph based on current literature (Appendix Figure 
1). We calculated prevalence ratios by comparing the 
post-PCV13 with the pre-PCV13 period for all end-
points. Reductions in PCV13 carriage were calculated 
as (1 – aPR) × 100%. We used Stata statistical soft-
ware 17.0 (StataCorp LLC, https://www.stata.com) 
to analyze data.

Results
During April 1, 2015–June 30, 2021, a total of 55,691 
children 2–59 months of age with acute lower respira-
tory tract infections were admitted to one of the study 
hospitals; 17,688 (32%) were assessed according to 
the study case definition, received study consent, and 
were enrolled (Appendix Figure 2). Among the 17,607 
confirmed to meet all study eligibility criteria, 71% 
were 2–23 months of age, 54% were male and 46% 
female, and most were admitted during autumn and 
winter (Appendix Table 1). More than two thirds of 
households had single children <5 years of age, and 
21% of children attended kindergarten. Most partici-
pants (15,248 [87%]) had a risk-factor questionnaire 
completed by a parent or caregiver; 81% (14,184), 
underwent chest radiography; and 87% (15,411) had 
nasopharyngeal swab samples collected and pro-

cessed, of which 6,545 swabs were tested for pneu-
mococci. Of 13,602 children for whom complete data 
were available to assess PPP, 11% met the case defini-
tion. Blood cultures were performed for 15,232 (87%) 
children, but only 14 (0.1%) were culture-positive for 
S. pneumoniae. For 2 children, S. pneumoniae was cul-
tured from pleural fluid; and for 1 child, blood culture 
was also positive.

The highest numbers of patients were enrolled 
from the largest districts, SKD and BZD. Differences 
were observed between the 4 study districts (Appen-
dix Table 1). Most households in CHD (2,984/3,703 
[81%]) and SKD (3,259/4,568 [71%]) used coal or 
wood as the main fuel source, and only half of the 
households in SBD and BZD used those smoky fu-
els. The highest proportions of participants living in 
crowded households were in CHD (32%) and SKD 
(36%) or living in informal housing were also in those 
same 2 districts (39% for CHD and 45% for SKD). 
Overall, 77% of participants had severe pneumonia; 
proportions were slightly higher in CHD (79%) and 
SKD (81%). A total of 37% of participants had very 
severe pneumonia; percentages were highest in BZD 
(43%) and CHD (46%). Of 13,755 children with inter-
pretable chest radiographs, 1,813 (13%) had PEP (Ap-
pendix Table 1).

Pneumonia incidence rates were highly seasonal; 
case numbers were highest during winter (October–
February) (Figure 1; Appendix Figure 3). After PCV13 
introduction, peak incidence of all clinical pneumonia 
decreased, except in CHD, which had no PCV catch-
up campaign (Figure 1). Pneumonia incidence de-
creased from February 2020 through June 2021, when 
COVID-19 restrictions, including kindergarten/school 
closures, were in place. No winter peak was observed 
during the 2020–21 season (Figure 1; Appendix Figure 
3). Overall, 32% of admitted patients met the study 
case definition, which was intended to exclude pa-
tients with milder pneumonia (Appendix Figure 4).

The profile of participants differed before and af-
ter introduction of PCV13 (Appendix Table 2). Com-
pared with the pre-PCV13 period, percentages were 
lower for children previously admitted (48% before 
vs. 42% after; p<0.0001), with hypoxia (22% before 
vs. 17% after; p<0.0001), or with primary endpoint 
pneumonia (14% before vs. 13% after; p = 0.007) in the 
post-PCV13 period. The percentage of children with 
severe and very severe pneumonia in the post-PCV13 
period was also reduced (Appendix Table 2).

By March 2020 (early COVID-19 pandemic re-
strictions), changes for crude IRRs varied by pneumo-
nia diagnosis and district (Appendix Table 3). For all 
districts combined, IRR was reduced for all patients 
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with all clinical pneumonia (21%, 95% CI 18%–23%), 
PEP (20%, 95% CI 12%–27%), severe pneumonia (23%, 
95% CI 20%–25%), very severe pneumonia (26%, 95% 
CI 22%–29%), hypoxic pneumonia (34%, 95% CI 29%–
39%), and PPP (38%, 95% CI 31%–44%). Individual 
districts mainly showed reductions, except for CHD, 
which showed increases in IRRs in cases of all clinical, 
severe, and very severe pneumonia. By March 2021, 
which included a period of COVID-19 restrictions, 
additional reductions were observed in line with re-
duced case numbers, and PEP was reduced by 36% 
(95% CI 29%–42%) (Appendix Table 3). We found 
some variability by age group; slightly larger reduc-
tions were observed for the 24–59-month age group 
compared with the younger age group (Appendix Ta-
ble 4). Annual incidence rates were highest in 2016 in 
SKD, SBD, and BZD, but CHD showed high incidence 
rates until 2019 (Appendix Table 5).

To account for secular trends and district effect 
not accounted for in crude IRRs, we calculated aIRRs 
for different pneumonia endpoints until February 
2020 before extensive COVID-19 lockdown measures 
(Figure 2; Appendix Table 6). Those aIRRs showed 
a reduction in all clinical pneumonia rates in 3 of 
the districts (BZD 0.71, 95% CI 0.59–0.85; SKD 0.86, 
95% CI 0.70–1.07; SBD 0.64, 95% CI 0.51–0.79) and 
an increase in 1 district (CHD 1.68, 95% CI 1.41–2.01) 
where PCV13 was introduced last without a catch-up 

campaign. The trends observed in the other pneu-
monia endpoints were similar across districts. For all 
districts combined by February 2020, aIRRs showed 
a reduction in PEP (0.72, 95% CI 0.56–0.93), very se-
vere pneumonia (0.77, 95% CI 0.64–0.93), and PPP 
(0.77, 95% CI 0.61–0.97); however, reductions were 
not shown for severe pneumonia (0.97, 95% CI 0.82–
1.15), hypoxic pneumonia (0.83, 95% CI 0.67–1.04), or 
all clinical pneumonia (1.01, 95% CI 0.87–1.17) (Figure 
2; Appendix Table 6). Reductions were similar until 
June 2021 (Figure 3, Appendix Table 6).

A total of 6,545 samples were tested for pneumo-
cocci. Overall, 3,056 (47%) were positive for pneu-
mococcal carriage and 2,557 (84%) were culturable 
and had serotyping results, of which 1,058 (41%) had 
PCV13-type serotypes, 1,267 (50%) had non–PCV13-
type serotypes, and 232 (9%) had both types of se-
rotype identified. In all districts combined, overall 
pneumococcal carriage prevalence (any serotype) 
did not change between the pre-PCV13 (48%) and 
post-PCV13 (46%) periods (adjusted prevalence ratio 
[aPR] 0.98, 95% CI 0.92–1.04) overall or in the indi-
vidual districts (Table). PCV13-type carriage overall 
was reduced by 44% (aPR 0.56, 95% CI 0.51–0.62) and 
in each district ranging from 41% in BZD and SBD 
to 50% in SKD. Non–PCV13-type carriage increased 
overall (aPR 1.49, 95% CI 1.32–1.67) and significantly 
in 2 districts (Table).
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Figure 1. All clinical pneumonia incidence rates (cases/1,000 population) by month and district in children 2–59 months of age, 
Ulaanbaatar, Mongolia, April 2015–June 2021. BZD, Bayanzurkh District; CHD, Chingeltei District; PCV13, 13-valent pneumococcal 
conjugate vaccine; SBD, Sukhbaatar District; SKD, Songinokhairkhan District.
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Sensitivity Trends 
We calculated aIRRs, assuming a delay of 1 year for 
the effect of PCV13 introduction among all children 
2–59 months of age (Appendix Table 7). Results for 
PEP were similar to those of the main analysis (26% 
[95% CI 4%–43%] reduction). We observed a greater 
reduction in clinical pneumonia (24%, 95% CI 9%–
36%), severe pneumonia (24%, 95% CI 8%–38%), and 
very severe pneumonia (30%, 95% CI 14%–44%) com-
pared with the main analyses.

Stratification by age group (2–23 months and 
24–59 months) demonstrated a greater reduction in 
most endpoints among older children. All clinical 
pneumonia cases were reduced by 12% (95% CI −7% 
to 27%) (negative numbers indicate an increase), PEP 
a 38% (95% CI 10%–57%) reduction, severe pneumo-
nia a 13% (95% CI −9% to 30%) reduction, very severe 
pneumonia a 39% (95% CI 21%–52%) reduction, and 
hypoxic pneumonia a 31% (95% CI 7%–48%) reduc-
tion in all districts combined (Appendix Table 7).

Discussion
In our large-scale surveillance study in Mongolia, a 
country with a high burden of respiratory disease, we 
demonstrated the effect of PCV13 introduction on chil-
dren hospitalized for pneumonia. We found that phased 
introduction of PCV13 in 4 districts of Ulaanbaatar re-
sulted in reduced disease incidence, with some vari-
ability by district, age, and pneumonia endpoint used. 
Overall, PCV13 led to similar reductions in cases of PEP 
(28%), very severe pneumonia (23%), and PPP (23%) 

but no significant reduction of all clinical pneumonia 
or severe pneumonia. Reductions were observed in 3 
districts in which catch-up campaigns were conducted 
at the time of vaccine introduction. PCV13-type pneu-
mococcal carriage declined overall (44%) and in each 
individual district. Non–PCV13-type carriage increased 
overall and significantly in 2 districts. Our surveillance 
program is one of few programs reporting PCV13 effect 
on pneumonia for a high-burden LMIC in Asia.

Many countries have used invasive pneumococcal 
disease (IPD) to determine PCV effect. Because IPD is 
rare and requires robust laboratory capacity, using IPD 
is often not possible in LMICs, nor is it an ideal metric in 
countries such as Mongolia with small populations and 
few annual IPD cases detected. Pneumonia surveillance 
can be an indicator of PCV effect. A challenge in study-
ing PCV effect on pneumonia is that young children 
do not produce sputum, very few cases are bacteremic, 
and no diagnostic tests are available for nonbacteremic 
pneumococcal pneumonia in this age group.

In Fiji, a time-series analysis 5 years after PCV10 
introduction found a reduction in pediatric hospital-
izations for pneumonia, varying by age and pneumo-
nia endpoint (22). Similar to the Fiji study, we found 
that compared with younger children, the reduction 
of pneumonia was greater among children 24–59 
months of age, although a lower proportion of chil-
dren in that group were fully vaccinated. It is likely 
that a higher percentage of cases in the older group 
were caused by pneumococcus and in the younger (<2 
years of age) group by respiratory syncytial virus (23).
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Figure 2. Adjusted IRRs for pneumonia endpoints for pre-vaccine period (April 2015–February 2020, excluding COVID-19 pandemic 
period) in study of effect of pneumococcal conjugate vaccine on pneumonia incidence rates among children 2–59 months of age, 
Mongolia, 2015–2021. A) Primary endpoint pneumonia; B) all pneumonia; C) severe pneumonia; D) very severe pneumonia; E) hypoxic 
pneumonia; F) probable pneumococcal pneumonia. Error bars indicate 95% CIs. IRR, incidence rate ratio.
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A recent systematic review found a decline in 
pneumonia hospitalization incidence among children 
after PCV introduction, although the magnitude of 
the decline across different endpoints and settings 
displayed heterogeneity (24). The review demon-
strated that PCV effect tended to increase as the pneu-
monia outcome increased in diagnostic specificity for 
pneumococcal disease (24). We observed substantial 
declines in carriage of PCV13 serotypes as well as de-
clines in pneumonia outcomes considered more like-
ly to be caused by pneumococcus, such as PEP and 
very severe pneumonia.

The decrease in pneumonia cases during 2020 and 
2021 probably results from measures put in place to 
combat the COVID-19 pandemic. Mongolia instituted 
kindergarten/school closures from the end of January 
2020 until September 2021, except for a brief period 
during late 2020 (25,26). In addition, travel bans, multi-
ple hard lockdowns, and other public health nonphar-
maceutical interventions were instituted (25,27), and 
COVID-19 vaccines were available starting in Febru-
ary 2021 (27). Studies from other countries have shown 
that restrictions instituted during the COVID-19 pan-
demic reduced childhood infections (28,29).

The use of catch-up campaigns has been encour-
aged by WHO as a strategy to increase herd immu-
nity (30). Observational data from LMICs document-
ing the effect of catch-up campaigns are limited. A 
transmission dynamic model using data from Kenya 
indicated that a catch-up campaign among children 

<5 years of age prevented additional IPD cases and 
used fewer doses per case averted than routine intro-
duction only (31). In our surveillance program, PCV 
introduction included a catch-up campaign in 3 of 
the 4 study districts. Pneumonia incidence was not 
significantly reduced in the district without catch-up 
(CHD) but was reduced, especially for more severe 
pneumonia endpoints, in the other districts. Of note, 
CHD was the last district to introduce PCV13, and no 
significant increase in non–PCV13-type carriage was 
demonstrated. The average annual coverage in eligi-
ble age groups in CHD was similar to routine cover-
age in BZD, where PCV13 was introduced in 2017.

In addition to catch-up campaigns, other explana-
tions for different results between districts are vari-
able smoke exposure, levels of poverty, housing type, 
crowding, and other factors reflective of known risk 
factors for pneumonia (4). Movement between districts 
and migration may also have varied over the study pe-
riod. A previous publication from Mongolia found evi-
dence of direct and indirect vaccine effects on carriage, 
which varied by formal and informal living conditions 
(32). We observed a reduction (46%) in vaccine-type 
pneumococcal carriage 3–5 years after introduction in 
4 districts. We identified residual circulation of vaccine 
serotypes (17%) despite high PCV coverage, similar to 
findings in Malawi and South Africa (33,34).

One study strength is establishment of an expand-
ed active pneumonia surveillance program on pre-
existing WHO invasive bacterial disease surveillance 
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Figure 3. Adjusted IRRs for pneumonia endpoints post-vaccine period (April 2015–June 2021, including COVID-19 pandemic period) in 
study of effect of pneumococcal conjugate vaccine on pneumonia incidence rates among children 2–59 months of age, Mongolia, 2015–
2021. A) Primary endpoint pneumonia; B) all pneumonia; C) severe pneumonia; D) very severe pneumonia; E) hypoxic pneumonia; F) 
probable pneumococcal pneumonia. Error bars indicate 95% CIs. IRR, incidence rate ratio.
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in 4 districts of Ulaanbaatar. All patients admitted for 
pneumonia were screened daily by clinical staff, and 
they were enrolled if they met a prespecified case def-
inition. The case definition selected for more severe 
cases. To ensure that all eligible patients were identi-
fied, dedicated study staff monitored weekly enroll-
ments performed by clinical staff. Any eligible pa-
tients that were missed were enrolled retrospectively, 
ensuring a high inclusion rate. The 6-year study in-
cluded a considerable number of patients admitted 
for respiratory conditions. A structured question-
naire was completed for participants, and most un-
derwent chest radiography and specimen collection. 
The radiographs were reread by 2 experienced inde-
pendent radiologists using WHO guidelines (17), and 
sensitive molecular methods were used to measure 
pneumococcal carriage and determine serotypes (20). 
In Mongolia, hospitalization is free for all children <5 
years of age, which reduces bias associated with ac-
cess to care. In addition, Mongolia has a structured 
public healthcare system in which most patients flow 
from primary care to district hospitals, enabling pop-
ulation-based estimates. The adherence of patients to 
this referral pathway can sometimes vary, however, 
by socioeconomic status and setting (35).

The first limitation our study was that although 
we had only 1 year of pre-PCV13 data in all districts, 
because of a phased PCV13 introduction, we had 2–3 
years of data before vaccine introduction in half of the 
districts. Second, the study included only 4 Ulaan-
baatar districts, so the results may not be generaliz-
able to all children in Mongolia, although the included  

districts are the largest in Ulaanbaatar and half the 
country’s population live in this city. Third, we did 
not collect data for a nonrespiratory control condi-
tion and could not account for other interventions, 
such as air pollution measures, which may have af-
fected pneumonia trends. Fourth, the COVID-19 
pandemic affected case numbers; however, adjusted 
IRRs were similar before or including this period. 
Last, ongoing internal migration of inhabitants and 
a possible increase in unregistered migrants during a 
migration ban (2017–2020) (36) may have potentially 
affected denominators and thus incidence rates. In 
addition, urban redevelopment of traditional tented 
housing (ger) districts resulted in the temporary re-
location of inhabitants from ger to other subdistricts 
(37). Redevelopment and relocation were reported 
in the ger subdistricts of CHD during 2016 and 2017 
(37), which may have resulted in lower case numbers 
reported in these years, because of patients accessing 
alternative district hospitals, and contributed to an 
overall rate increase.

In conclusion, PCV13 introduction into the child-
hood immunization schedule in Mongolia, with catch-
up vaccination in 3 districts, resulted in substantially 
reduced pneumonia incidence. The decreases were 
more prominent for more severe disease endpoints 
and in PCV13-type pneumococcal colonization. Other 
countries that have satisfactory PCV coverage can ex-
pect decreased severe pneumonia cases and vaccine-
type carriage after vaccine introduction. Countries 
should consider offering catch-up vaccination when 
introducing PCV and should monitor changes in  
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Table. Carriage prevalence and prevalence ratios for pneumococcal carriage among 6,545 children with pneumonia before and after 
PCV13 availability, 4 districts, Mongolia, 2015–2021* 

Pneumococcal type 
Pre-PCV13, 

no./total 

Pre-PCV13 
prevalence, % 

(95% CI) 
Post-PCV13 

no./total 

Post-PCV13 
prevalence, % 

(95% CI) 

Unadjusted 
prevalence ratio 

(95% CI) 

Adjusted 
prevalence ratio 

(95% CI)† 
Overall pneumococci       
 All districts 882/1,837 48.0 (45.7–50.3) 2,174/4,708 46.2 (44.7–47.6) 0.96 (0.91–1.02) 0.98 (0.92–1.04) 
 Bayanzurkh 263/657 40.0 (36.2–43.9) 363/905 40.1 (36.9–43.4) 1.00 (0.89–1.13) 1.06 (0.93–1.21) 
 Chingeltei 341/592 57.6 (53.5–61.6) 565/1,194 47.3 (44.4–50.2) 0.82 (0.75–0.90) 0.81 (0.73–0.90) 
 Songinokhairkhan 184/368 50.0 (44.8–55.2) 953/1,891 50.4 (48.1–52.7) 1.01 (0.90–1.13) 1.00 (0.89–1.12) 
 Sukhbaatar 94/220 42.7 (36.1–49.5) 293/718 40.8 (37.2–44.5) 0.95 (0.80–1.14) 0.95 (0.79–1.14) 
PCV13 serotypes       
 All districts 548/1,742 31.4 (29.3–33.7) 742/4,304 17.2 (16.1–18.4) 0.55 (0.50–0.60) 0.56 (0.51–0.62) 
 Bayanzurkh 161/614 26.2 (22.8–29.9) 119/830 14.3 (12.0–16.9) 0.55 (0.44–0.68) 0.59 (0.47–0.75) 
 Chingeltei 200/566 35.3 (31.4–39.4) 205/1,077 19.0 (16.7–21.5) 0.54 (0.46–0.64) 0.53 (0.44–0.63) 
 Songinokhairkhan 127/354 35.9 (30.9–41.1) 306/1,737 17.6 (15.8–19.5) 0.49 (0.41–0.58) 0.50 (0.42–0.61) 
 Sukhbaatar 60/208 28.8 (22.8–35.5) 112/660 17.0 (14.2–20.0) 0.59 (0.45–0.77) 0.59 (0.44–0.78) 
Non-PCV13 serotypes       
 All districts 329/1,742 18.9 (17.1–20.8) 1,170/4,304 27.2 (25.8–28.5) 1.44 (1.29–1.60) 1.49 (1.32–1.67) 
 Bayanzurkh 76/614 12.4 (9.9–15.2) 193/830 23.2 (20.4–26.3) 1.88 (1.47–2.40) 1.95 (1.49–2.55) 
 Chingeltei 152/566 26.8 (23.2–30.7) 286/1,077 26.5 (23.9–29.3) 0.99 (0.83–1.17) 0.96 (0.79–1.17) 
 Songinokhairkhan 69/354 19.5 (15.5–24.0) 550/1,737 31.7 (29.5–33.9) 1.62 (1.30–2.03) 1.57 (1.24–1.99) 
 Sukhbaatar 32/208 15.4 (10.8–21.0) 141/660 21.4 (18.3–24.7) 1.39 (0.98–1.97) 1.26 (0.88–1.81) 
*Overall, PCV13 serotypes and non-PCV13 serotypes. PCV13, 13-valent pneumococcal conjugate vaccine.  
†Adjusted by using a common set of confounders: age, informal housing, other children <5 y of age in the home, coal used for fuel, household income, 
crowding, maternal education, season, and antimicrobial drug receipt 48 h before admission. 
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disease burden and pneumococcal serotypes through 
surveillance. Our study adds to limited data available 
on PCV effects for Asia and for countries transition-
ing from Gavi financial support.

This article was published as a preprint at https://www.
ssrn.com/abstract=4485625.
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Tuberculosis (TB) causes more deaths worldwide 
than any other infectious disease. Progress in 

reducing the global burden of TB stalled during the 
COVID-19 pandemic; an estimated 10.6 million per-
sons became ill from TB in 2021, and 1.6 million died 
(1). The number of persons with multidrug-resistant 
TB (MDR TB), defined by resistance to rifampin and  

isoniazid, is estimated to have increased by 3.1% since 
2020 (1), including an estimated 450,000 incident cas-
es in 2021. MDR TB remains underdiagnosed and is 
associated with worse treatment outcomes than for 
drug-susceptible TB (DS TB) (1,2).

TB is spatially heterogeneous both globally and 
locally. Thirty low- and middle-income countries ac-
count for nearly 90% of the global burden of disease 
(1), but an unequal distribution of disease has also 
been described more locally (3–12). Although poorly 
understood, the drivers of geographic heterogeneity 
in TB are believed to reflect the complex interplay be-
tween the infectious and susceptible host, the infect-
ing organism, the physical environment, and distal 
determinants such as poverty (13).

The World Health Organization (WHO) recog-
nizes Vietnam as a high-burden country for TB and 
MDR TB; estimated incidence is 173 (95% CI 112–
247) cases/100,000 population for TB and 9.1 (95% CI 
5.5–13) cases/100,000 population for MDR TB (1,14). 
The highest incidence is seen in the southern parts of 
the country, especially in Ho Chi Minh City (15,16). 
Patients with MDR TB in Ho Chi Minh City can have 
acquired their disease through selection of drug-re-
sistance mutations while receiving first-line TB drug 
treatment or directly from others through transmis-
sion (17). Comparison of the spatial distributions 
of DS and MDR TB across this high-incidence city 
has the potential to offer insights into relative con-
tributions of each to MDR TB burden. For example, 
the observation of distinct spatial distributions of 
DS and MDR TB might support the hypothesis that 
MDR TB is transmitted in networks independent  
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We characterized the spatial distribution of drug-suscep-
tible (DS) and multidrug-resistant (MDR) tuberculosis 
(TB) cases in Ho Chi Minh City, Vietnam, a major metrop-
olis in southeastern Asia, and explored demographic and 
socioeconomic factors associated with local TB burden. 
Hot spots of DS and MDR TB incidence were observed in 
the central parts of Ho Chi Minh City, and substantial het-
erogeneity was observed across wards. Positive spatial 
autocorrelation was observed for both DS TB and MDR 
TB. Ward-level TB incidence was associated with HIV 
prevalence and the male proportion of the population. 
No ward-level demographic and socioeconomic indica-
tors were associated with MDR TB case count relative to 
total TB case count. Our findings might inform spatially 
targeted TB control strategies and provide insights for 
generating hypotheses about the nature of the relation-
ship between DS and MDR TB in Ho Chi Minh City and 
the wider southeastern region of Asia.
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from circulating DS TB. Alternatively, sporadic 
MDR TB cases among clusters of DS TB cases might 
be more indicative of de novo emergence of MDR 
TB through inadequate treatment and selection. 
Clarifying hyperlocal patterns of disease might also 
contribute to spatially targeted interventions, such 
as active case finding and healthcare facility plan-
ning (18–21), and to the design of and recruitment 
into clinical trials and other studies. In this study, 
we aimed to characterize the spatial distribution of 
DS and MDR TB in Ho Chi Minh City and to explore 
demographic and socioeconomic factors associated 
with local TB burden. 

Methods

Study Setting
Ho Chi Minh City has a total population of ≈10  
million persons and is subdivided into 24 districts,  
19 urban and 5 rural (Appendix Figure 1, https://
wwwnc.cdc.gov/EID/article/30/3/23-1309App1.
pdf), of which 3 were combined to form a munici-
pal city, Thủ Đức City, in 2021. Districts of Ho Chi 
Minh City are further subdivided into 322 adminis-
trative subunits consisting of wards, townlets, and 
communes (hereafter wards); median population is 
≈22,000 persons. This study includes data from before 
2021 and therefore references the previous 24-district 
subdivision of Ho Chi Minh City.

Public-sector community-based TB care in Ho Chi 
Minh City is coordinated through 24 district treatment 
units (DTUs), where persons with suspected TB are re-
ferred for testing and treatment. Once given a diagno-
sis of TB, patients are registered with the National TB 
Program (NTP). All persons given a diagnosis of MDR 
TB in the public sector initiate treatment through the 
city’s lung hospital, Phạm Ngọc Thạch, and then con-
tinue outpatient care through the DTUs. Phạm Ngọc 
Thạch Hospital is the regional center for MDR TB 
treatment in southern Vietnam and provides treat-
ment for ≈80% of all MDR TB cases in Vietnam (22).

Study Population
The study population included all persons who regis-
tered for TB treatment in the public sector in 23 of the 
districts of Ho Chi Minh City during January 1, 2020–
April 30, 2023. The study excluded TB cases from 
Cần Giờ, a rural district comprising 7 wards with a 
population of 71,527 persons (0.8% of the population 
Ho Chi Minh City) (23), because data were not avail-
able. For the ecologic analysis, 315 residential wards 
constituting 23 of the districts of Ho Chi Minh City 
formed the units of analysis.

Data Sources
We accessed data for participants with DS TB from 
the Vietnam TB Information Management Electronic 
System, a web-based surveillance system that records 
TB notifications and treatment outcomes for the NTP 
(24). This system includes data on all persons in Ho 
Chi Minh City initiated on first-line TB therapy in 
the public sector. At treatment initiation, patient de-
tails are added to a paper-based register, which is 
electronically transcribed by DTU staff at monthly 
intervals. Data extracted from the electronic register 
for this study included participant age, sex, home 
address, HIV status, and history of previous TB. We 
obtained data for participants with MDR TB from an 
ongoing cohort study conducted through the Oxford 
University Clinical Research Unit. Participants in-
cluded all persons initiating treatment for MDR TB 
at Phạm Ngọc Thạch Hospital. We selected the Ox-
ford University Clinical Research Unit cohort study 
database as the data source for MDR TB cases because 
it provided identical case coverage to the NTP-based 
register, with less missing data.

We obtained district-level and ward-level demo-
graphic and socioeconomic indicators from published 
regional data collected as part of the 2019 Vietnam 
census (23). Extracted indicators that were available 
at only the district level were population age struc-
ture, unemployment rate, proportion of households 
that had a computer, and number of persons living 
with HIV. All wards within a district were assigned 
the district value for indicators available only at the 
district level. For example, District 1 had an HIV 
prevalence of 1.5%; this value was subsequently as-
signed to each of the constituent wards of District 
1. Extracted indicators, which were available at the 
ward level, were total population, population by sex, 
population density, average number of persons per 
household, literacy rate, and residence type (urban 
or rural). Location was labeled as city center if wards 
were located in the central commercial, commuting, 
and socializing hubs of Ho Chi Minh City and as pe-
ripheral if wards were located outside those areas 
(Appendix).

Design and Analysis
We used individual-level data for a descriptive, 
cross-sectional analysis of the burden of TB in Ho 
Chi Minh City and the characteristics of TB cases. 
We used an ecologic design, using ward-level data, 
to describe ward-level factors associated with TB 
burden. The outcomes for the ecologic analysis were 
total TB incidence and burden of MDR TB relative 
to total TB.
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Descriptive Analysis
We summarized participant characteristics with 
mean and SD for continuous variables and as counts 
and proportions for categorical variables. Participant 
home addresses were deidentified and converted 
to latitude and longitude coordinates by using the 
Google geocoding service and the tidygeocoder pack-
age in R (25). We obtained spatial polygons for the 
administrative units of Ho Chi Minh City from the 
Database of Global Administrative Areas (26). We 
mapped and aggregated individual TB cases and cal-
culated average annual incidence of DS and MDR TB 
by ward.

Spatial Autocorrelation
We assessed the presence, strength, and direction of 
spatial autocorrelation over the entire study area sep-
arately for DS and MDR TB incidence through the cal-
culation of the global Moran I statistic. We assessed 
local spatial autocorrelation in these parameters 
through the calculation of the Getis-Ord Gi* statistic 
and Anselin Local Moran I. We used the Getis-Ord 
Gi* statistic to define spatial hot spots and cold spots 
relative to the null hypothesis of spatial randomness 
over the entire study area. In this analysis, we con-
sidered each ward in the context of its neighboring 
wards, forming a neighborhood. We compared the lo-
cal sum of the values for the given parameter (e.g., DS 
TB incidence) for each of the wards in a neighborhood 
proportionally to the sum of the parameter values for 
all the wards in the study area. We designated neigh-
borhoods with significantly higher parameter values 
than the entire study area as hot spots and neighbor-
hoods with significantly lower parameter values than 
the entire study area as cold spots (27). The analysis 
using Anselin Local Moran I value further compared 
each ward to its neighborhood. We designated wards 
with high parameter values within neighborhoods 
with high values as high–high clusters, wards with 
high values within neighborhoods with low values 
as high–low outliers, wards with low values within 
neighborhoods with low values as low–low clusters, 
and wards with low values within neighborhoods 
with high values as low–high outliers (28). We ap-
plied false-discovery rate correction for multiple test-
ing and spatial dependency to both local spatial auto-
correlation analyses.

Ecologic Analysis
We summarized continuous ward-level indicators 
with mean and SD or median and interquartile range, 
depending on skew. We summarized categorical 
indicators as counts and proportions. Exploratory  

analyses evaluated the relationship between ward-
level demographic and socioeconomic indicators and 
total TB incidence and MDR TB case count relative to 
total TB case count. We assessed univariate associa-
tions between ward-level indicators and the natural 
logarithm of total TB incidence through the inspec-
tion of scatter plots and the calculation of the Spear-
man ρ for continuous indicators and by the Wilcoxon 
rank-sum test and analysis of variance for categori-
cal indicators. We categorized continuous indica-
tors with nonlinear associations with the outcome 
into tertiles. We included indicators associated with 
total TB incidence (p<0.05) in a multivariable nega-
tive binomial regression model for each outcome. 
We modeled ward-level TB incidence by including 
ward-level TB case count as the dependent variable 
with an offset term for ward population. We mod-
eled ward-level MDR TB case count as a proportion 
of all TB cases by using MDR TB case count as the 
dependent variable with an offset term for total TB 
case count. Visualization of spatial autocorrelation in 
the residuals for each negative binomial regression 
model (measured by using the Moran I) demonstrat-
ed positive spatial autocorrelation in the residuals 
for both models, violating the assumption of inde-
pendence. To account for that finding, we added a 
spatially autocorrelated random effects term to each 
model (using the centroid of each ward as latitude 
and longitude), assuming a Matérn covariance struc-
ture. We assessed additional assumptions, including 
the absence of multicollinearity and inequality in 
outcome means and variances. We compared model 
fit for the mixed-effects models and standard models 
using Akaike information criterion and scatter plots 
of the observed versus fitted values.

We conducted a sensitivity analysis to estimate 
the association between ward-level demographic and 
socioeconomic indicators and both outcomes using 
conditional autoregressive modeling. In contrast to 
the main analysis, in which spatial information was 
formatted as point data (i.e., latitude and longitude 
coordinates for the centroid of each ward), in the 
sensitivity analysis we reformatted spatial informa-
tion as areal data, each ward represented by a spatial 
polygon surrounded by an administrative boundary. 
We defined ward neighbors by contiguity in adminis-
trative boundaries and converted neighborhood lists 
to an adjacency matrix by using binary weights to in-
dicate the presence (1) or absence (0) of a neighbor. 
We incorporated the adjacency matrix into the nega-
tive binomial regression model as a random effects 
term to account for spatial autocorrelation between 
neighboring wards.
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We conducted statistical analyses using R Studio  
(The R Foundation for Statistical Computing, https://
www.r-project.org). We calculated statistics and  
conducted mapping by using ArcGIS Online  
(Environmental Systems Research Institute, https://
www.esri.com).

Results

Descriptive Analysis
During January 1, 2020–April 30, 2023, a total of 
36,089 persons registered for DS TB treatment and 
1,451 persons for MDR TB treatment in Ho Chi Minh 
City. Of those, 49 participants with DS TB (0.1%) and 
12 participants with MDR TB (0.8%) provided resi-
dential addresses outside Ho Chi Minh City and were 
excluded from the spatial analysis. Of the 37,540 to-
tal persons who registered treatment, 25,463 (67.7%) 
were male and 12,117 (32.3%) female; 30,268 (81%) 
were urban dwelling, and the mean (SD) age was 45 
(16.5) years (Table 1). HIV co-infection was present in 
5% of all participants (n = 1,692); this proportion was 
similar for both DS and MDR TB groups. Previous TB 
infection was reported by 4,721 (13%) of the partici-
pants given treatment for DS TB and 795 (55%) of the 
participants given treatment for MDR TB, although 
it is unknown how many previous infections were 
caused by drug-resistant TB.

Among 31,999 case-patients who had no history 
of TB, 640 (2%) registered for MDR TB treatment; 772 
(14%) of the 5,516 case-patients who had a history of 
TB registered for MDR TB treatment. Asymmetric 
population pyramids demonstrated a greater DS and 
MDR TB burden among middle-aged to late middle–
aged men, although the sex distributions were more 
symmetric in persons <40 years of age (Figure 1). The 
average annual incidence of notified DS TB in Ho 

Chi Minh City during this period was 121.4 (95% CI 
119.1–123.7) cases/100,000 persons and of MDR TB 
was 4.8 (95% CI 4.4–5.4) cases/100,000 persons.

We observed substantial spatial heterogeneity in 
DS and MDR TB average annual incidence across Ho 
Chi Minh City wards (Figures 2, 3). DS TB incidence 
(per 100,000 persons) ranged from 26.7 in Bình Lợi 
(District Bình Chánh) to 1,345.3 in An Khánh (District 
2). Thirty-two wards recorded 0 MDR TB cases during 
the study period; ward 8 (District 11) showed MDR 
TB incidence of 31.7 cases/100,000 persons. In the 
overall study population, 3.9% (95% CI 3.7%–4.1%) of 
all TB cases were given treatment for MDR TB.

Spatial Autocorrelation
The global Moran I statistic was 0.14 (p<0.001) for 
DS TB and MDR TB incidence, demonstrating weak 
positive global spatial autocorrelation for each pa-
rameter. This finding demonstrated that over the 
entire study area, wards with similar values for 
the above parameters (e.g., similar DS TB incidenc-
es) were located closer to each other than would 
be expected if the wards were randomly arranged 
(i.e., there was evidence of some spatial clustering 
for each parameter). However, the global Moran I 
provided no information about where these clus-
tered wards were located or how the clustering of 
DS TB related to the clustering of MDR TB. We pro-
vide results of the hot spot analysis using the Getis-
Ord Gi* statistic (Figure 4). Hot spots were evident 
in the central parts of Ho Chi Minh City for DS TB 
and MDR TB and cold spots to the north of the city 
center. Like the hot spots, the DS and MDR TB cold 
spots largely overlapped spatially. We provide An-
selin Local Moran I to demonstrate wards in which 
TB incidence was congruent with the surrounding 
neighborhood (clusters) and wards in which TB  

 
Table 1. Characteristics of persons registered for TB treatment stratified by TB type, Ho Chi Minh City, Vietnam, January 1, 2020–April 
30, 2023* 
Characteristic DS TB, n = 36,089 MDR TB, n = 1,451 Overall, n = 37,540 
Age, y, mean (SD) 44.9 (16.6) 45.7 (14.1) 44.9 (16.5) 
Sex, no. (%) 

   

 F 11,732 (32.5) 385 (26.5) 12,117 (32.3) 
 M 24,357 (67.5) 1,066 (73.5) 25,423 (67.7) 
HIV status, no. (%) 

   

 Negative 27,745 (76.9) 1,333 (91.9) 29,078 (77.5) 
 Positive 1,609 (4.5) 83 (5.7) 1,692 (4.5) 
 Unknown 6,735 (18.7) 35 (2.4) 6,770 (18.0) 
TB history, no. (%) 

   

 No 31,344 (86.9) 655 (45.1) 31,999 (85.2) 
 Yes 4,721 (13.1) 795 (54.8) 5,516 (14.7) 
 Unknown 24 (0.1) 1 (0.1) 25 (0.1) 
Residence type, no. (%) 

   

 Urban 29,086 (80.6) 1,182 (81.5) 30,268 (80.6) 
 Rural 6,948 (19.3) 246 (17.0) 7,194 (19.2) 
*DS TB, drug-susceptible tuberculosis; MDR TB, multidrug-resistant tuberculosis; TB, tuberculosis. 
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incidence contrasted the surrounding neighborhood 
(outliers) (Figure 5). Heterogeneity in incidence, for 
DS TB and MDR TB, was evident even within hot 
spots and cold spots. For DS TB, most of the wards in 
the city center hot spot, when considered separately 
from their neighborhood, were low–high outliers. 
A greater number of the wards that constituted the 
MDR TB hot spot were high–high clusters, indicat-
ing more homogeneity within the MDR TB hot spots.

Ward-Level Factors Associated with TB Burden
Wards in the highest tertile of TB incidence had the 
lowest male proportion of the population (47.6%), al-
though the range of male proportion of the popula-
tion between wards in the highest and lowest tertiles 
was small (47.6%–48.1%). Literacy rate (98.8%), pro-
portion of homes that had a computer (65.2%), and 
lowest unemployment rate (2.8%) were also lowest in 
those wards (Table 2). Those wards had the highest  
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Figure 1. Population pyramids of age and sex distributions of participants registered for TB treatment in Ho Chi Minh City, Vietnam, 
January 1, 2020–April 30, 2023. A) DS TB; B) MDR TB. DS, drug-susceptible; MDR, multidrug-resistant; TB, tuberculosis.

Figure 2. Choropleth map displaying geographic variation in average annual incidence (cases/100,000 persons) for DS TB, subdivided 
by ward, Ho Chi Minh City, Vietnam, January 1, 2020–April 30, 2023. Map does not include Cần Giờ district. Inset map shows location 
of study area in Vietnam. DS TB, drug-susceptible tuberculosis.
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proportion of the population 30–59 years of age 
(45.5%), population density (32,117 persons/km2), 
number of persons per household (3.6), and HIV 
prevalence (0.9%). Indicators strongly associated 

with TB incidence in the univariate analyses, and sub-
sequently included in the final multivariable models, 
were male proportion of the population, proportion 
of the population 30–59 years of age, average number 
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Figure 3. Choropleth map displaying geographic variation in average annual incidence (cases/100,000 persons) for MDR TB, 
subdivided by ward, Ho Chi Minh City, Vietnam, January 1, 2020–April 30, 2023. Map does not include Cần Giờ district. Inset map 
shows location of study area in Vietnam. MDR TB, multidrug-resistant tuberculosis.

Figure 4. Spatial clustering of drug-susceptible (A) and multidrug-resistant (B) tuberculosis incidence, Ho Chi Minh City, Vietnam, 
January 1, 2020–April 30, 2023, based on the Getis-Ord GI* statistic. 
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of persons per household, literacy rate, unemploy-
ment rate, and HIV prevalence (Appendix).

In a multivariable negative binomial regression 
model with mixed effects, in contrast to the unad-
justed association, the male proportion of the popula-

tion was strongly associated with total TB incidence 
(incidence rate ratio 1.05, 95% CI 1.02–1.08), and each 
percentage increase in HIV prevalence was associated 
with a 77% increase in TB incidence (incidence rate 
ratio 1.77, 95% CI 1.54–2.03) (Table 3). None of the 
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Figure 5. Spatial clusters and outliers of drug-susceptible (A) and multidrug-resistant (B) tuberculosis incidence, Ho Chi Minh City, 
Vietnam, January 1, 2020–April 30, 2023, based on the Anselin Local Moran I statistic. 

 
Table 2. Ward-level demographic and socioeconomic indicators stratified by tertiles of overall TB incidence, Ho Chi Minh City, 
Vietnam, January 1, 2020–April 30, 2023* 

Indicator 

Overall TB incidence 
1st tertile, median 

incidence 84/100,000 
persons, n = 105 

2nd tertile, median 
incidence 120/100,000 

persons, n = 105 

3rd tertile, median 
incidence 187/100,000 

persons, n = 105 Overall, n = 315 
Male proportion of population, mean 
(SD) 

48.1 (1.86) 48.2 (1.82) 47.6 (2.78) 48.0 (2.21) 

Proportion of population 30–59 years 
old, mean (SD) 

44.1 (2.23) 44.2 (2.02) 45.5 (1.52) 44.6 (2.04) 

Residence type, no. (%) 
    

 Urban 86 (81.9) 89 (84.8) 88 (83.8) 263 (83.5) 
 Rural 19 (18.1) 16 (15.2) 17 (16.2) 52 (16.5) 
Location, no. (%) 

    

 City center 23 (21.9) 22 (21) 24 (22.9) 69 (22) 
 Peripheral 82 (78.1) 83 (79) 81 (77.1) 246 (78) 
Total population, median (IQR) 26,050 

(12,402–40,289) 
25,575 

(13,354–42,067) 
16,911 

(11,190–25,068) 
22,383 

(12,397–36,880) 
Population density, persons/km2, 
median (IQR) 

27,537 
(9,203–44,241) 

20,810 
(6,323–41,535) 

32,117 
(13,005–46,854) 

27,781 
(8,233–44,812) 

Average no. persons per household, 
mean (SD) 

3.51 (0.319) 3.55 (0.269) 3.62 (0.321) 3.56 (0.307) 

Literacy rate, median (IQR) 99.3 (98.7–99.6) 99.3 (98.7–99.6) 98.8 (97.7–99.3) 99.2 (98.5–99.6) 
Unemployment rate, mean (SD) 3.25 (1.17) 3.10 (1.05) 2.76 (0.747) 3.04 (1.02) 
Proportion of homes that had a 
computer, median (IQR) 

71.7 (55.4–77.6) 71.0 (59.3–76.5) 65.2 (59.3–73.2) 71.0 (59.3–76.3) 

HIV prevalence, median (IQR) 0.49 (0.34–0.84) 0.48 (0.34–0.93) 0.93 (0.45–1.29) 0.49 (0.36–0.95) 
*IQR, interquartile range; TB, tuberculosis. 
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selected indicators were significantly associated with 
MDR TB case counts relative to total TB case counts. 
The mixed-effects models including spatially auto-
correlated random effects terms demonstrated better 
fit than the standard models, and estimates from the 
sensitivity analysis were similar to those of the main 
analysis (Appendix).

Discussion
We characterized the burden of TB in Ho Chi Minh 
City with granular, ward-level descriptions of DS and 
MDR TB burden. Both DS and MDR TB were hetero-
geneously distributed throughout Ho Chi Minh City, 
forming geographic clusters of high incidence, pre-
dominantly concentrated in the city’s center. Total TB 
incidence at the ward level was strongly associated 
with HIV prevalence and more weakly associated 
with the proportion of the population that is male.

The asymmetric age and sex distributions among 
TB cases in Ho Chi Minh City we describe are con-
sistent with the findings from the second Vietnam 
national TB prevalence survey, which confirmed 
prevalence of bacteriologically TB was 4 times greater 
in male than female patients and increased with age 
(29). Studies from Vietnam have also demonstrated a 
greater prevalence of latent TB in men than in women 
(30). However, the magnitude of this difference in 
prevalence by sex is smaller for latent TB than for ac-
tive TB, emphasizing the role of sex differences in risk 
factors for disease progression. A recent substudy 
from the national TB prevalence survey specifically 
noted the stark differences in the prevalence of smok-
ing (45% of men vs. 1% of women) (31) and drinking 
(44% of men vs. 1% of women) (32) in Vietnam as like-
ly contributors to observed differences in the preva-
lence of active TB by sex (33). Sex differences, for both 
latent and active disease, remain incompletely under-
stood but likely reflect the complex interplay between 
biologic, behavioral, and environmental factors (34). 
We demonstrated a 5% greater TB incidence per per-
centage increase in the proportion of the population 

that is male, suggesting sex-specific differences in risk 
might manifest at the population level.

We observed a 5% prevalence of TB and HIV co-
infection, approximating previous regionally repre-
sentative estimates (14,35). TB incidence was substan-
tially greater with each percentage increase in HIV 
prevalence, emphasizing the potential contribution of 
HIV to the TB epidemic, even in settings with rela-
tively low HIV prevalence.

Our incidence estimates for DS and MDR TB, de-
rived from TB notifications, are markedly lower than 
the estimates of WHO for Vietnam (TB incidence 173 
cases/100,000 persons, MDR TB 9.1 cases/100,000 
persons) (14), despite evidence that Ho Chi Minh City 
has some of the highest TB incidences in the country 
(15,16). The WHO estimates are derived from mul-
tiple data sources, including prevalence surveys, case 
notification data, expert opinion about case detection 
gaps, and dynamic modeling (36). The differences 
between incidence estimates likely reflect a limita-
tion of this study, the diagnostic gap—the difference 
between the true number of persons who became ill 
with TB and the number of persons who were reg-
istered for TB treatment (1). The diagnostic gap is a 
well-described barrier to TB control in Vietnam and 
has recently been exacerbated by COVID-19–related 
health system disruptions; <50% of predicted TB 
case-patients enrolled for treatment in 2021 (1).

TB incidence in Ho Chi Minh City was not associ-
ated with measures of poverty (literacy rates; unem-
ployment rates; and proportion of homes that had a 
computer, a proxy for material wealth), even though 
poverty is a well-established risk factor (37). The cen-
tral concentration of TB burden in Ho Chi Minh City 
was instead, in our data, related to factors such as sex 
distribution and HIV prevalence. This lack of asso-
ciation might reflect the poor representation of pov-
erty and social deprivation by the variables included 
in our analysis (i.e., literacy rates are high across Ho 
Chi Minh City, even in poorer and rural areas [23]). It 
might also be that rapid equitable economic growth in 
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Table 3. Adjusted incidence rate ratios for association between ward-level indicators and total TB incidence and MDR TB case count    
r  relative to total TB case count, Ho Chi Minh City, Vietnam, January 1, 2020–April 30, 2023* 

Indicator Total TB incidence (95% CI) MDR TB case count (95% CI)† 
Male proportion of population, % 1.05 (1.02–1.08) 0.99 (0.94–1.05) 
Proportion of population 30–59 years old, % 1.02 (0.99–1.04) 1.03 (0.98–1.08) 
Average no. persons per household 1.13 (0.98–1.31) 0.97 (0.76–1.25) 
Literacy rate 

  

 1st tertile Referent Referent 
 2nd tertile 1.06 (0.96–1.18) 1.05 (0.89–1.26) 
 3rd tertile 0.96 (0.86–1.07) 1.01 (0.83–1.25) 
Unemployment rate, % 0.96 (0.92–1.00) 0.95 (0.87–1.03) 
HIV prevalence, % 1.77 (1.54–2.03) 1.08 (0.85–1.38) 
*MDR TB, multidrug-resistant tuberculosis; TB, tuberculosis.  
†Relative to total TB case count. 
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Vietnam, coupled with a reduction in TB prevalence 
over the past 20 years, contributed to a reduction of 
the concentration of TB among poor households (38).

Our spatial analysis demonstrated substantial 
overlap in geographic clusters of DS and MDR TB 
incidence, raising interesting questions about the re-
lationship between DS and MDR TB burden. Those 
findings might be consistent with the hypothesis that 
drug resistance largely emerges from DS TB de novo, 
and distributions of DS and MDR TB therefore relat-
ed. Alternatively, the overlapping distributions might 
also be consistent with the hypothesis that most MDR 
TB is transmitted and that factors associated with 
the transmission of TB in general are geographically 
clustered. The lack of association between any demo-
graphic and socioeconomic indicators and MDR TB 
burden relative to total TB burden we describe po-
tentially supports the latter hypothesis. Ultimately, it 
is likely that both de novo and transmitted resistance 
contribute to MDR TB burden. Enrichment of spatial 
data with genetic data will better demonstrate the 
relative contributions of each mechanism (39).

The first limitation of this study is that we used 
public sector registry data to identify TB cases and 
therefore excluded persons who had undiagnosed TB, 
potentially biasing our sample selection toward groups 
who are more likely to manifest signs or symptoms 
when symptomatic. Furthermore, we had no data on 
private-sector TB diagnoses, estimated to represent 8% 
of all TB cases in Ho Chi Minh City (40). Participants 
in our study were only geolocated through their home 
addresses. However, several studies have demonstrat-
ed the role of transmission outside the home with the 
emergence of genetic data demonstrating geographi-
cally unrelated, cryptic transmission networks medi-
ated by mobility-linked locations in high-burden set-
tings (41,42). Future work on the transmission of TB 
in Ho Chi Minh City will benefit from whole-genome 
sequencing–derived genetic data being generated by a 
parallel, related study. The degree to which our find-
ings are relevant to other settings is uncertain, but it is 
likely that the dynamics in Ho Chi Minh City are not 
markedly different from other major cities with similar 
economic metrics in Southeast Asia, where nearly half 
the world’s TB patients reside (1).

In summary, we characterized the demographic 
profile of persons with DS and MDR TB in Ho Chi 
Minh City and mapped parts of the city most affected. 
Our findings provide a starting point for deeper re-
search into TB acquisition and transmission dynamics 
and spatially informed TB control interventions in Ho 
Chi Minh City, Vietnam, and the greater southeastern 
region of Asia.
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Disseminated leishmaniasis (DL) is an aggressive 
form of tegumentary leishmaniasis associated 

with multiple and polymorphic cutaneous lesions (ac-
neiform and inflammatory papules, nodules, and ul-
cers) in >2 body regions (1). DL has been mainly de-
scribed in Brazil in patients infected with Leishmania 
(Viannia) braziliensis, but the disease is documented in 
other countries of South America and in the Old World. 
The disease may be caused by other species of Leishma-
nia, including L. mexicana amazonensis, L. (V) guyanen-
sis, L. tropica, and L. major (2–5). DL is an emerging dis-
ease and is highly endemic in the area of L. braziliensis 
transmission in northeastern Brazil. The frequency of 
the disease has increased >20 times in the past 30 years 
(1,6). When DL was initially described in this leish-
maniasis-endemic area in northeastern Brazil, L. ama-
zonensis was the most frequent causal agent, detected 
in 56.2% of the cases (7,8). However, more recently, L. 
amazonensis has not been isolated from patients in this 
area, and L. braziliensis is the only species identified in 
patients with American tegumentary leishmaniasis (9). 
Making distinctions between DL and diffuse cutane-
ous leishmaniasis (DCL) is key. Whereas DL might be 
caused by several Leishmania species, DCL is caused by 
L. amazonensis in the Americas and L. aethiopica in Af-
rica. DL manifests in multiple types of lesions, such as 
papules, superficial nodules, and ulcerations, with few 
parasites in situ, whereas DCL is associated with infil-
trated plaques and nodules along with a high number 
of parasites in the lesions (10).

Both parasite and host factors participate in 
the pathogenesis of DL. L. braziliensis is polymor-
phic, and genotypic differences in chromosomes 28 
and 42 are associated with DL (11). Those genotypic  

differences among isolates of L. braziliensis have been 
associated with different clinical forms and with the se-
verity of American tegumentary leishmaniasis and its 
failure to respond to meglumine antimoniate (12,13). 
Regarding host factors, macrophages from DL patients 
allow for greater parasite multiplication than cutane-
ous leshmaniasis (CL) cells (14). A parasite dissemina-
tion as observed in visceral leishmaniasis and DCL is 
associated with an impairment in the T-cell response 
(15,16). However, no clear evidence exists demonstrat-
ing that impairment in the T-cell response is the cause 
of parasite dissemination in DL. Approximately 20% of 
DL patients might experience a negative delayed-type 
hypersensitivity test to leishmania antigens (17). Al-
though peripheral blood lymphocytes from DL patients 
produce fewer Th1 cytokines than those of patients 
with CL (1), immunochemistry studies of the lesions in 
CL and DL patients do not show differences in the cell 
populations and cytokine expression in those 2 forms of  
the disease (17,18).

Case reports of DL indicate that after a single le-
sion develops, dissemination occurs in >1 weeks (1,8). 
The number of lesions can vary widely; some patients 
have 10–20, and others can have >100–1,000 lesions. 
Nasal mucosa involvement occurs in ≈40% of DL  
patients (1,7,8). 

DL is associated with high therapeutic failure of 
meglumine antimoniate treatment. Studies are scarce 
comparing therapeutic responses to antimony in DL 
versus CL, as are studies investigating the efficacy of 
miltefosine and amphotericin B. Moreover, clinic and 
immunologic risk factors associated with DL are not 
well known. In this article, we investigated miltefos-
ine and amphotericin B treatment of DL and CL, the 
phenotypic heterogeneity among DL patients when 
grouped by the number of lesions, and associations 
with distinct immunologic responses and different 
clinical and therapeutic outcomes.

Materials and Methods
The study participants were 202 patients, half with 
DL and half with CL. All were from the leishmania-
sis-endemic region of Corte de Pedra in the southeast 
of Bahia, Brazil. All DL patients (N = 101) whose ill-
ness was diagnosed during 2016–2020 at the Corte de 
Pedra Health Post were included in the study. CL pa-
tients (N = 101) were randomly assigned to the study 
without age or sex matching at a ratio of 1:1 DL and 
CL cases. The primary goal was to determine whether 
the number of lesions influenced the clinical outcome 
and response to therapy. We compared DL patients 
who have >50 cutaneous lesions with DL cases who 
have <40 lesions at the time of diagnosis.

Disseminated leishmaniasis (DL) is an emergent severe 
disease manifesting with multiple lesions. To determine 
the relationship between immune response and clinical 
and therapeutic outcomes, we studied 101 DL and 101 
cutaneous leishmaniasis (CL) cases and determined cy-
tokines and chemokines in supernatants of mononuclear 
cells stimulated with leishmania antigen. Patients were 
treated with meglumine antimoniate (20 mg/kg) for 20 
days (CL) or 30 days (DL); 19 DL patients were instead 
treated with amphotericin B, miltefosine, or miltefosine 
and meglumine antimoniate. High levels of chemokine 
ligand 9 were associated with more severe DL. The 
cure rate for meglumine antimoniate was low for both 
DL (44%) and CL (60%), but healing time was longer in 
DL (p = 0.003). The lowest cure rate (22%) was found 
in DL patients with >100 lesions. However, meglumine 
antimoniate/miltefosine treatment cured all DL patients 
who received it; therefore, that combination should be 
considered as first choice therapy.
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Case Definition and Inclusion Criteria
A DL case was defined as the presence of >10 or 
more cutaneous lesions over 2 or more noncontigu-
ous body areas in a patient (1) (Figure 1). CL was 
defined by the presence of 1–3 ulcerated lesions with 
raised borders in any body location. The diagnosis of 
DL and CL was confirmed by a positive PCR result 
for L. braziliensis. We counted the cutaneous lesions 
and measured the diameter of the largest lesion. An 
ear, nose, and throat (ENT) specialist performed a 
nasal and pharyngeal examination to evaluate mu-
cosal involvement.

Skin Lesion Biopsies for Histopathology and PCR
We took skin biopsy specimens from the border of the 
original ulcer in both DL and CL patients. The skin 
fragment was obtained using a 4 mm–diameter punch 
after the application of a local anesthetic. The biopsy 

specimens were placed in formol for histopathologic 
studies and in RNAlater for PCR techniques. Leish-
mania species was determined by a serial real-time 
quantitative PCR system (19).

Leishmania Antigen and Skin Test
We prepared soluble Leishmania antigen (SLA) as pre-
viously described (20). We inoculated 25 μg in 0.1 mL 
of SLA in the forearm and induration was determined 
after 48 hours. A skin test result was considered posi-
tive when the induration was >5 mm.

Determination of Cytokines and Chemokines
We isolated peripheral blood mononuclear cells 
(PBMC) from heparin-treated venous blood by Ficoll-
Hypaque gradient centrifugation and stimulated them 
with SLA as previously described (21). In brief, after 
washing 3 times in 0.9% NaCl, we resuspended cells 
in RPMI 1640 Medium (ThermoFisher Scientific) sup-
plemented with 10% fetal bovine serum, 100 IU/mL 
penicillin, and 100 μg/mL streptomycin. Cells were 
adjusted to 3 × 106 cells/mL, put in 24-well plates, and 
stimulated with SLA (5 μg/mL). After incubation for 
72 hours at 37°C and 5% CO2, we collected and stored 
supernatants at –20°C. The levels of interferon (IFN) γ, 
tumor necrosis factor (TNF), interleukin (IL) 1β, IL-10, 
chemokine ligand (CXCL) 9, and CXCL-10 were mea-
sured by the ELISA sandwich method with reagents 
from BD Bioscience and the results were expressed as 
picograms per milliliter (22).

Treatment and Cure Criteria
As recommended by the Brazil Ministry of Health, 
the standard therapy was meglumine antimoniate 
(20 mg/kg) for 30 days for DL and 20 days for CL. 
However, DL is common in patients >50 years of 
age, and those patients should be treated with am-
photericin B or miltefosine to reduce adverse reac-
tions. Of the 202 study participants, 82 DL and all 
101 CL patients were treated with meglumine anti-
moniate. We evaluated patients every 30 days until 
cure. We registered the number and size of lesions 
and noted appearance of new lesions, occurrence of 
mucosal disease, and adverse reactions at each visit. 
We defined cure as complete epithelization of all le-
sions without infiltrated borders 90 days after initi-
ating therapy.

Age of >50 years, heart disease, and kidney fail-
ure are contraindications for the use of meglumine 
antimoniate. In this study, 19 DL patients did not 
receive meglumine antimoniate and were treated 
with available alternative drugs: 3 patients received 
deoxycholate amphotericin B (20–30 mg/kg weight; 

Figure 1. Clinical manifestation of disseminated leishmaniasis in 
male patient with multiple acneiform lesions, inflammatory and 
crusted papules in the face (A) and trunk (B), Brazil.
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6 patients received liposomal amphotericin B (35–40 
mg/kg weight; 5 patients received miltefosine (2.5 
mg/kg/d [maximum dose 150 mg/d] for 28 days); 
and 5 patients received miltefosine (same dosing) 
combined with meglumine antimoniate (20 mg/kg 
weight for 30 d). Patients who failed to respond to 
meglumine antimoniate received a second course of 
the same dose. Those who failed to respond to milt-
efosine or amphotericin B received liposomal ampho-
tericin B (35 mg/kg weight).

Ethical Considerations
This study was approved by the Institutional Review 
Board of the Federal University of Bahia (document 
of approval CAAE 62974916.8.0000.5577). Written 
consent was obtained from all participants.

Results

Clinical Profile of DL and CL Patients
DL patients were older than CL patients; men predomi-
nated in both groups, but the percentage of men was 
substantially higher in the DL group (Table 1). The du-
ration of disease before diagnosis was longer in patients 
with DL. Both the frequency of patients with positive 
leishmania skin test (p = 0.0001) and the induration size 
(p = 0.0001) were higher for CL than for DL. After 1 
course of meglumine antimoniate therapy, 44% of DL 
patients were cured, compared with 60% of CL pa-
tients. The healing time was significantly shorter for CL 
than for DL (110.8 + 7.7 vs. 177 + 19.6 days; p = 0.001). 
Mucosal disease associated with cutaneous lesions was 
observed in 33 (40.7%) of 81 DL patients, as determined 
by an ENT specialist. Those lesions were characterized 
as nodular or superficial ulcers in the nasal mucosa.

Cytokine and Chemokine Profile in DL
We have previously shown that DL patients produce 
lower levels of IFN-γ and TNF in supernatants of 
PBMC stimulated with SLA than do CL patients (21). 
To better understand the pathogenesis of DL and to 
determine whether the number of lesions in DL was 
associated with cytokine production, we measured 
IFN-γ, TNF, IL-1β, IL-10, CXCL-9, and CXCL-10 
in supernatants of PBMC cultures stimulated with 
SLA in DL patients who had <40 lesions (DL<40) 
and in those with >50 lesions (DL>50) (Figure 2). No 
difference was noted regarding the production of 
IFN-γ, TNF, IL-1β, IL-10, and CXCL-9 between the 2 
groups, but CXCL-10 was higher (p = 0.0034) in su-
pernatants of lymphocyte cultures of DL>50 patients 
(1,742 + 1,206 pg/mL) than in DL<40 patients (626 + 
684.4 pg/mL).

Demographic and Clinical Features of  
DL>50 Patients and DL<40 Patients
During the study period, we diagnosed DL>50 in 40 
patients and DL<40 in 55 patients (Table 2). DL>50 
was associated with older age and shorter duration 
of illness. The time between the appearance of the 
first lesion and dissemination was similar in the 2 
groups. Systemic symptoms such as fever, chills, 
and headache were present in most cases (76% of 
DL>50 cases and 70% of DL<40). Although not a sig-
nificant difference, the frequency of mucosal disease 
was higher in DL>50 patients (44%) than in DL<40 
patients (31%). Cure rate was 30% in DL>50 patients 
and 56% in DL<40 patients after a single course of 
meglumine antimoniate (p = 0.03). Moreover, the 
healing time in DL>50 patients was longer (p = 
0.001) than in DL<40 patients. 

 
Table 1. Demographic, clinical, laboratory, and therapeutic characteristics of DL and CL patients in study of leishmaniasis immune 
response and clinical and therapeutic outcomes, Corte de Pedra Health Post, Brazil, 2016–2019* 
Characteristic DL, n = 101 CL, n = 101 p value 
Age, y 39.5 + 14.8 32 + 13.3 0.0002† 
Sex, no. (%) patients    
 M 88 (87) 69 (68) 0.04‡ 
 F 13 (13) 23 (32) 0.04‡ 
Duration of disease until diagnosis, d 52.7 + 2.7 41 + 1.7 0.0003† 
No. lesions 113.6 + 210 1.4 + 0.7 <0.0001† 
Biggest lesion size, mm2 775.6 + 2,190 392.7 + 283.4 NS 
Lymphadenopathy, no. positive/no. tested (%) 47/93 (50.5) 61/101 (60.4) NS 
LST size, mm2 102.3 + 96.5 213.6 + 126.9 0.0001† 
LST , no. positive/no. tested (%) 64/97 (66) 101/101 (100) 0.0001‡ 
PCR. no. positive/no. tested (%) 84/91 (92) 101/101 (100) NS 
Cure rate, no. cured/no. treated (%)§ 34/78 (44)¶ 44/101 (60) NS 
Healing time, d§ 177 + 19.6 110.8 + 7.7 0.001† 
*Values are mean + SD unless otherwise indicated. CL, cutaneous leishmaniasis; DL, disseminated leishmaniasis; LST, Leishmania skin test, NS, not 
significant. 
†By unpaired t-test.  
‡By Fisher exact test. 
§After 1 standard course of meglumine antimoniate (20 mg/kg/d) for 20 d (CL) or 30 d (DL). 
¶Six patients had no outcome data, irregular use, or discontinuation. 
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Because the classification of the 2 patient groups 
was arbitrary, we performed other comparisons to 
better evaluate the effect of the number of lesions in 
therapeutic response to meglumine antimoniate. The 
cure rate in persons with DL who had <20 lesions 
was 65% and for DL patients with >100 lesions was 
22% (p = 0.003). The cure rate in patients with DL<40 
(56%) was higher than in patients with DL with >100 
lesions (22%) (p = 0.006). The cure rate progressively 
decreased according to the number of lesions; the 
cure rate was 65% in patients with <20 lesions, 56% 

in patients with <40 lesions, 30% in patients with >50 
lesions, and 22% in persons with >100 lesions. The 
Kaplan-Meyer curve (Figure 3) shows that DL<40 pa-
tients healed in less time than did DL>50 patients.

Therapeutic Response of DL to Amphotericin B  
and Miltefosine
We demonstrate the clinical features, cure rate at 
day 90, and healing time of patients who were treat-
ed with amphotericin B, miltefosine, or miltefosine 
combined with meglumine antimoniate and in those 
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Table 2. Demographic, clinical, laboratory, and therapeutic aspects of DL patients according to number of lesions in study of 
leishmaniasis immune response and clinical and therapeutic outcomes, Corte de Pedra Health Post, Brazil, 2016–2019* 
Characteristic DL with >50 lesions, n = 40 DL with <40 lesions, n = 55 p value 
Age, y  44.5 + 13.3 35.3 + 14.2 0.0018† 
Sex     
 M 34 (85) 49 (89) NS 
 F 6 (15) 6 (11) NS 
Duration of disease, d  46 + 3.4 58 + 4.0 0.031† 
Dissemination time, d  21 + 2.3 26 + 4.4 0.40† 
Systemic symptoms, no. positive/no. tested (%) 29/38 (76) 28/40 (70) NS 
No. lesions  252 + 45.1 22 + 1.0 <0.0001† 
Largest lesion area, mm2 1181 + 581.2 905 + 415.3 0.69# 
Lymphadenopathy, no. positive/no. tested (%) 13/26 (50) 25/51 (49) NS 
Mucosal involvement, no. positive/no. tested (%)  16/36 (44.4) 12/39 (31) NS 
LST area, mm2  156 + 84.7 141 + 71.4 0.47† 
LST, no. positive/no. tested (%)  24/39 (62) 36/54 (67) NS 
PCR, no. positive/no. tested (%)  24/26 (92) 44/49 (90) NS 
Cure rate, no. cured/no. treated (%)‡  7/21 (33) 23/41 (56) 0.03§ 
Healing time, d  218 + 203 109 + 95 0.0018† 
*Values are no. (%) or mean + SD unless otherwise indicated. DL, disseminated leishmaniasis; LST, Leishmania skin test, NS, not significant. 
†By unpaired t-test.  
‡After 1 standard course of meglumine antimoniate (20 mg/kg/d) for 30 d. 
§By Fisher exact test. 

 

Figure 2. Systemic production of 
chemokines and cytokines among 
disseminated leishmaniasis (DL) 
patients with >50 and <40 lesions, 
Corte de Pedra Health Post, 
Brazil, 2016–2019. Peripheral 
blood mononuclear cells from 11 
patients with <40 lesions and 14 
patients with >50 lesions were 
cultured in the presence of soluble 
Leishmania antigen (5 µg/mL) for 
72 hours. Cytokine levels in culture 
supernatants were measured by 
ELISA. Horizontal lines represent 
median values. CXCL, chemokine 
ligand; IFN, interferon; IL, interleukin; 
TNF, tumor necrosis factor.
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who only received meglumine antimoniate (Table 
3). The demographic and clinical features were simi-
lar in the 4 groups of patients; the number of lesions 
was lower in patients treated with miltefosine alone. 
The healing time was shorter (p<0.01) for persons 
who received meglumine antimoniate plus miltefos-
ine than for patients in the other groups. Moreover, 
all patients who received the combined therapy 
were cured before day 90, and 4 (80%) of them were 
cured on day 60.

Discussion
DL is a severe disease caused by L. braziliensis that is 
characterized by a large number of cutaneous lesions, 
occurrence of both skin and nasal mucosal disease, 
and high rate of therapeutic failure to meglumine 
antimoniate, the drug that is recommended to treat 
leishmaniasis in Latin America (17). The pathogenesis 
of DL is not completely understood; clinical findings 
and response to therapy is based on case series con-
sisting of small numbers of patients (7,8). We com-
pared clinical features and response to therapy in 101 
CL patients and 101 DL patients and evaluated the 
association between number of lesions with clinical 
findings, cytokine production, and outcome of thera-
py. We confirmed that DL patients are predominantly 
male, that DL is highly associated with mucosal dis-
ease, and that treatment with meglumine antimoniate 
has a high rate of failure. The number of lesions in 
DL cases was variable; increased numbers of lesions 
were associated with age, duration of illness, long 
healing time, and production of CXCL-10 in PBMC 
supernatants stimulated with SLA. Moreover, in a 
small number of patients, we observed that combined 
therapy with miltefosine and meglumine antimoniate 
resulted in a higher cure rate of DL than other forms 
of therapy.

In this study, DL patients were older than CL pa-
tients, but we also identified a large number of DL 
case-patients <50 years of age and many women with 
DL, which differed from previous reports (7,14). The 

cases of DL in our leishmaniasis-endemic area have 
spread from inner regions to other parts, suggesting 
parasites that cause DL are spreading and that trans-
mission is occurring in peridomicile areas rather than 
only in farms, as previously described (11,23). Those 
changes in epidemiology might have influenced the 
increasing occurrence of DL in young patients and 
in women. The low cure rate of CL with meglumine 
antimoniate is a major public health problem in our 
area; the failure rate has increased from 10% to >50% 
in the past 40 years (24–27). In this study, the cure rate 
by meglumine antimoniate was similar in CL and DL 
cases, but the healing time was longer for DL patients 
than for CL patients.

The immune response at the lesion site and his-
topathologic features are similar in DL and CL, but 
frequency of positive Leishmania skin test was lower 
in DL than in CL (17,18,28). In addition to the less 
frequent positive skin tests, the size of the skin test 
reaction was smaller in DL than in CL. The contrast 
between the similarity of the immune response at the 
lesion site in DL and CL and the poor Th1 immune 
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Figure 3. Kaplan-Meyer curve showing time to cure in the 2 
groups of DL patients treated with meglumine antimoniate in 
monotherapy, Corte de Pedra Health Post, Brazil, 2016–2019. 
Patients with >50 lesions (n = 40) and <40 lesions (n = 55) were 
treated with meglumine antimoniate (20 mg/kg/d) for 20 days  
(p = 0.0012 by log-rank test). DL, disseminated leishmaniasis.

 
Table 3. Clinical profile and response to therapy of disseminated leishmaniasis patients treated with amphotericin b, miltefosine, and 
miltefosine plus meglumine antimoniate in study of leishmaniasis immune response and clinical and therapeutic outcomes, Corte de 
Pedra Health Post, Brazil, 2016–2019* 

Treatment† Age, y  % Men Illness duration, d No. lesions 
Cure rate 
on day 90 Healing time 

Amphotericin B, n = 9 59 + 5.1 88.8% 54 + 16.9 350 + 489.1 55.5% 137 + 1113 
Miltefosine, n = 5 54 + 9.2 100% 54 + 9.2 49 + 18.8 40% 96 + 27.9 
Miltefosine + MA, n = 5 57 + 9.3 80% 42 + 7.5 181 + 204.2 100% 53 + 18.3 
MA, n = 78 39 + 16.7 84.6% 53 + 6.1 116 + 217.3 44% 177 + 19.6 
p value 0.51‡ 0.47§ 0.32¶ 0.26¶ NA 0.01¶ 
*Values are mean + SD unless otherwise indicated. MA, meglumine antimoniate; NA, not applicable. 
†The total number of disseminated leishmaniasis cases with therapeutic outcome was 97. We have no follow-up data for 4 patients. 
‡By student t-test. 
§Fisher exact test. 
¶Kruskal-Wallis test. 
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response observed in DL in vivo and in vitro tests to 
evaluate T-cell response argue against an impairment 
in the Th1 immune response (17). Because of migra-
tion of most antigen-reactive cells to the multiple in-
fected skin lesions, it is likely those cells are lacking in 
peripheral blood and in the other tissues, decreasing 
T-cell responses in the delayed-type hypersensitivity 
test and in blood cells.

Regarding the histopathology and cytokine pro-
duction, DL lesions have fewer granuloma and high-
er frequencies of B cells and plasma cells than CL ul-
cers (8,29). More recently, we have shown that SLA 
IgG and IgG2 titers are higher in DL than in CL (30). 
Moreover, we demonstrated a correlation between 
number of lesions and L. braziliensis IgG2 production 
in DL patients (29). In this study, most cytokine levels 
were similar in the supernatants of PBMC stimulated 
with SLA from DL and CL, as well in supernatants 
of cells from DL patients with >50 lesions or <40 le-
sions, but CXCL-10 levels were higher in DL patients 
with >50 lesions. The inflammatory response is exag-
gerated in DL patients (14). CXCL-10 is expressed in 
blood cells, and its receptor, chemokine receptor 3, 
is expressed in tissues. The interaction of those che-
mokines enables macrophages and T cells to pass to 
the lesion site, increasing the inflammatory response 
(30,31), which suggests that CXCL-10 might contrib-
ute to the inflammatory response in DL patients and 
to parasite dissemination.

The high number of cutaneous lesions and the 
concomitant occurrence of cutaneous and mucosal 
involvement is a hallmark of DL. We compared the 
clinical features and cure rate in DL patients who 
had <40 lesions with patients who had >50 lesions. 
We left a gap between 40 and 50 lesions because 
very small lesions might be missed on routine clini-
cal examination. Patients with >50 lesions were 
older and had shorter duration of illness, but we 
found no difference between the 2 groups of pa-
tients regarding symptoms associated with sys-
temic manifestations. The frequency of mucosal 
leishmaniasis was similar in those with >50 and 
<40 lesions, indicating that the number of lesions 
is not a biomarker of mucosal disease in DL pa-
tients. Mucosal leishmaniasis is one of the more se-
vere forms of L. braziliensis infection, characterized 
by ulcerated lesions, rupture of the nasal septum, 
and destruction of the facial structure (32). Mucosal 
leishmaniasis usually occurs weeks or even years 
after a cutaneous ulcer, but in a recent large series 
of patients with mucosal leishmaniasis, we found 
that 30% of cases had concomitant cutaneous and  
mucosal disease (33,34). The severity of mucosal 

disease in L. braziliensis infection has been classi-
fied by stages ranging from 1 to 5 (35). A nodule is 
the first sign of mucosal involvement, followed by 
superficial and deep ulcer cutaneous, nasal septum 
perforation, and destruction of the facial structure. 
In DL, patients’ mucosal disease is characterized by 
nodules and superficial ulcers; the mild mucosal 
disease and the initiation of therapy before nasal 
tissue is destroyed might contribute to the curing of 
mucosal lesions in <60 days for most DL patients.

The cure rate in patients who had >50 lesions was 
significantly lower than for persons with <40 lesions; 
only 30% of patients with >50 lesions were cured 
with 90 days of therapy. Moreover, a higher num-
ber of lesions was associated with prolonged healing 
time. Most DL patients were treated with meglumine 
antimoniate, but a limited number of patients were 
treated with amphotericin B, miltefosine, or miltefos-
ine combined with meglumine antimoniate. We have 
previously shown that miltefosine is more effective 
than meglumine antimoniate in CL patients (27,36). 
However, monotherapy with miltefosine only cured 
40% of DL patients. All 5 patients who used miltefo-
sine plus meglumine antimoniate were cured, and 
healing time was short. Amphotericin B is known to 
be the best drug for therapy in American tegumen-
tary leishmaniasis, and liposomal amphotericin B in 
a total dose ranging from 17 to 37 mg/kg cured 70% 
of DL patients by day 90 (37). In this study, only 4 of 
9 patients treated with this drug did not achieve cure 
by day 90, although all were eventually cured with-
out the use of other drugs. Patients taking amphoteri-
cin B who did not achieve cure by day 90 had more 
severe disease; in 3 of those patients, the number of 
lesions ranged from 405 to 1,500.

The limitations of this study are that not all pa-
tients had an ENT examination, follow-up care was not 
completed in ≈8% of DL patients treated with meglu-
mine antimoniate, and alternative therapies were 
only used in a limited number of patients. Moreover, 
treatment with amphotericin B is very difficult in this 
leishmaniasis-endemic area, and the effective dose of 
this drug was only achieved 60–90 days after initiating 
therapy. However, this study followed a much larger 
number of DL patients prospectively than previous 
studies, and new information was obtained. Most DL 
patients were <40 years of age, and despite mucosal 
disease occurring in a high frequency, the mucosal le-
sions were mild and responded well to therapy. De-
spite an increase in failure of meglumine antimoniate 
therapy observed in CL patients in this area, healing 
time was longer for DL patients than for CL patients, 
and the number of lesions in DL patients was associat-
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ed with increased treatment failure. In addition, we ex-
tend previous observations regarding the therapeutic  
response in DL. The high rate of therapeutic failure 
and the long healing time of DL patients treated with 
meglumine antimoniate indicates that alternative 
drugs or polychemotherapy should be used for the 
treatment of DL. Although further testing in a large 
number of DL patients is needed, our preliminary ob-
servation of a high cure rate in patients who received 
meglumine antimoniate combined with miltefosine 
supports use of those drugs as first choice therapy.
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Infectious disease outbreaks are typically accom-
panied by stigma (1–4). Stigma can be defined as 

the denial of social acceptance to a person or group 
due to an attribute deemed discrediting by their com-
munity or society (5,6). That umbrella term includes 
the cognitive or affective endorsement of negative 
stereotypes, referred to as prejudice; negative behav-
ioral manifestations, referred to as discrimination; 
and medically unwarranted avoidance or neglect of 
affected persons (6,7) (Figure 1).

Stigma associated with infectious disease outbreaks 
reduces affected persons’ opportunities for physical, 
social, and psychological well-being, contributing to 

social and health inequalities (8–11). COVID-19 and 
Ebola virus disease (EVD) stigmatization have specifi-
cally been proven predictors of severe psychological 
distress, depression, anxiety, and posttraumatic stress 
disorder symptoms (1,11–13). Stigma can also impede 
efforts to control disease outbreaks by fueling fear, 
decreasing uptake of preventive measures (including 
vaccination), discouraging health-seeking behavior 
such as seeking testing and treatment, and reducing 
adherence to care (6,8,10,14).

Furthermore, outbreak-related public health in-
terventions can affect the stigma associated with a 
disease (10). In a systematic review of the psycho-
logical effects of quarantine, persistent stigma was a 
central theme (15). Contact tracing has been found to 
lead to linear blaming of affected persons (10). Vacci-
nation status can be a source of social stigma (16–18), 
as can decisions about mask-wearing (19). Although 
evidence of the exacerbation of stigma might not fully 
undermine the value of these public health interven-
tions, those outcomes highlight the need for the in-
advertent social consequences to be considered and 
minimized where possible.

A range of stigma reduction interventions have 
been described in the literature (6–8,14). However, 
without robust stigma scales, determining where 
these interventions are most needed and evaluating 
their effectiveness in outbreak settings is difficult 
(11). Stigma scales have been used in other infectious 
disease contexts (most routinely HIV) and could be 
similarly helpful when applied to emerging and re-
emerging disease outbreaks (11). 

We identified disease-associated stigma scales 
used in outbreak settings and described the com-
monalities, strengths, and limitations of those scales. 
The results of this review are intended to improve 
the development and use of stigma scales in infec-
tious disease outbreaks and inform the design of a  
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Infectious disease outbreaks are associated with sub-
stantial stigma, which can have negative effects on af-
fected persons and communities and on outbreak control. 
Thus, measuring stigma in a standardized and validated 
manner early in an outbreak is critical to disease con-
trol. We reviewed existing scales used to assess stigma 
during outbreaks. Our findings show that many different 
scales have been developed, but few have been used 
more than once, have been adequately validated, or 
have been tested in different disease and geographic 
contexts. We found that scales were usually developed 
too slowly to be informative early during an outbreak and 
were published a median of 2 years after the first case of 
an outbreak. A rigorously developed, transferable stigma 
scale is needed to assess and direct responses to stigma 
during infectious disease outbreaks.
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transferable scale that can be used across different in-
fectious disease outbreaks.

Methods

Review Strategy 
We conducted a review to determine what scales have 
been used for measuring stigma due to outbreaks in 
affected communities through January 31, 2023. We 
assessed the common content themes within those 
scales; methods used to develop and validate scales; 
psychometric properties (i.e., validity and reliabil-
ity) of available scales; transferability of scales; and 
limitations in the development, validation, and use of 
those scales. 

We defined an outbreak as a rapid, unexpected 
increase in disease case numbers. Therefore, stigma 
associated with endemic, chronic diseases, such as 
HIV and tuberculosis, were outside the scope of 
this review. 

We reported this review in line with the PRISMA 
(Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) 2020 checklist (20). Our review 

was informed by the COSMIN guideline for system-
atic reviews of patient reported outcome measures 
(21). The review protocol is registered on PROSPERO 
(registration no. CRD42023396387).

Search Strategy and Eligibility Criteria
We formulated a search strategy with a librarian. The 
search strategy combined terms for the key compo-
nents “stigma,” “infectious disease outbreaks,” and 
“prevalence scale” by using the Boolean operator 
“AND” (Appendix Figure, https://wwwnc.cdc.gov/
EID/article/30/3/23-0934-App1.pdf). We searched 
MEDLINE, PsycINFO (https://www.apa.org/pubs/
databases/psycinfo), CABI Global Health, Embase, 
Web of Science, and Cochrane Library databases with 
no language restrictions. We retrieved all records pub-
lished though January 31, 2023. We also screened bibli-
ographies of relevant systematic reviews and included 
additional studies that met the eligibility criteria.

Study Selection
We assessed the retrieved records according to our 
eligibility criteria (Table 1). We uploaded all citations  
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Figure 1. Conceptualization of stigma used in a systematic review of scales for measuring infectious disease–related stigma. Graphic is 
based on N. Jones and P.W. Corrigan (6) and M.G. Weiss (7). Asterisk (*) indicates cases where avoidance is medically unwarranted.

 
Table 1. Eligibility criteria used in a systematic review of scales for measuring infectious disease–related stigma 
Criteria Inclusion Exclusion 
Population Involved community members of any age affected by 

infectious disease outbreaks with or without a 
personal history of the disease 

Focused exclusively on healthcare workers 

Concept Described the development, validation, or use of a 
stigma scale, such as a survey, questionnaire or other 
instrument consisting of >2 closed-end questions that 
form a composite score and aim to measure outbreak-
related stigma prevalence 

Focused on broader measurements of intersectional 
stigma during, but not due to, the outbreak of concern*  

Context Related to infectious disease outbreaks Focused on non-communicable diseases or chronic 
infectious diseases 

Study types Cross-sectional or cohort studies Interventional studies without a pre-intervention survey 
 Studies describing scale development, piloting, or 

validation 
Studies investigating stigma exclusively through 
qualitative methods 

 Interventional studies which include pre-interventional 
surveys providing observational data. 

Protocols, guidelines, book sections, case-reports, opinion 
pieces (editorials, viewpoints, commentaries) conference 
abstracts, preprints, and unpublished literature 

Minimum validity 
of scale 

Use of stigma scales that, at a minimum, have been 
assessed for face validity†  

Not applicable 

*Includes scales that assessed stigma associated with race, sexual orientation, mental health, weight, or class during an outbreak or epidemic but not in 
direct relation to the outbreak disease. For example, scales that assessed race-based discrimination unrelated to association with COVID-19 during the 
pandemic. 
†For instance, scales were at least superficially reviewed by potential end-users, experts, or both to confirm that the scale appears to reflect the concept 
of stigma in the relevant contexts (21). 
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to EndNote 20.5 (https://endnote.com) and re-
moved duplicates, after which we uploaded titles 
and abstracts to Rayyan systematic review software 
(https://www.rayyan.ai). Two independent review-
ers screened a random 10% of titles and abstracts and 
we used Cohen’s kappa (κ) to calculate inter-rater 
reliability. For conflicts, the 2 reviewers discussed 
the studies and agreed or asked a third reviewer to 
provide a final decision, then clarified or refined the 
eligibility criteria. We repeated this process until κ 
showed excellent agreement (22), after which all fur-
ther titles and abstracts were divided and screened  
by 1 reviewer.

The reviewer screened eligible full text pub-
lications by using the same process. We achieved 
the required κ after the second round of title and 
abstract screening (κ = 0.76) and the second round 
of full text screening (κ = 0.82). Where complete 
stigma scales were not available, we emailed cor-
responding authors to request access. If the scale 
was still not provided, we excluded the study. For 
non-English stigma scales, we used a professional 
translation service to translate the scale into Eng-
lish (Appendix). Where multiple articles described 
the same study activities, we included the article 
with the most available information on the relevant 
stigma scale.

Data Extraction and Analysis
One reviewer extracted data by using Excel 2021 (Mi-
crosoft, https://www.microsoft.com). Another re-
viewer independently extracted a random 10% sam-
ple of the data to ensure reliability.

We assessed the psychometric properties (i.e., 
validity and reliability) of scales according to COS-
MIN guidelines (21) (Table 2). We assessed transfer-
ability for each scale by using a previously described 
cross-cultural equivalence framework (23) (Appendix 
Table 1).

We used framework synthesis to identify the 
domains of stigma included in the scales (24). That 
method of evidence synthesis is used increasingly 
for health-related reviews and combines framework 
and thematic analysis techniques (24). The method 
involves starting with an a priori conceptual frame-
work and coding all included studies against that 
framework (24). New themes, or in this case stigma 
domains, are generated from evidence not captured 
by the a priori framework (24). The approach thereby 
adopts a mixed deductive and inductive approach to 
produce a revised conceptual framework (24).

We used a previously developed stigma typology 
(6) as the a priori framework for our analysis (Ap-
pendix Table 3). We then adjusted and added to the 
framework throughout the analysis as new domains 
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Table 2. Definitions of psychometric properties used in a systematic review of scales for measuring infectious disease–related stigma* 
Domain Property Aspect of property Definition 
Validity   The degree to which an instrument measures the constructs it purports 

to measure 
 Content validity  The degree to which the content of an instrument is an adequate 

reflection of the construct to be measured 
  Face validity The degree to which an instrument looks as though it reflects the 

construct to be measured 
 Construct validity  The degree to which the scores of an instrument are consistent with 

hypotheses (for instance regarding internal relationships, relationships 
to scores of other instruments, or differences between relevant  

groups) based on the assumption that the instrument validly  
measures the construct to be measured 

  Structural validity The degree to which the scores of an instrument are an adequate 
reflection of the dimensionality of the construct to be measured 

  Hypotheses testing The degree to which the scores of an instrument are consistent with 
hypotheses on relationships to scores of other instruments 

  Cross-cultural validity The degree to which an instrument accurately measures the same 
construct in different population groups. 

 Criterion validity†  The degree to which the scores of an instrument are an  
adequate reflection of a gold standard 

Reliability   The degree to which the measurement is free from measurement error 
 Internal 

consistency 
 The degree of the interrelatedness among the items 

 Test-retest 
reliability 

 The amount of the total variance in two sets of measurements  
which is due to 'true’ differences between respondents 

 Measurement 
error 

 The systematic and random error of a respondent's score that is not 
attributed to true changes in the construct to be measured 

Responsiveness   The ability of an instrument to detect change over time  
in the construct to be measured 

*Table adapted from COSMIN definitions of domains, measurement properties, and aspects of measurement properties, which uses the term “gold 
standard” (21). 
†Criterion validity assessment was not considered in this review because no standard for stigma assessment is available. 
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emerged that were not captured by the existing frame-
work. For example, many scales included questions 
about stigmatization by employers and coworkers 
but did not fit into the existing framework; therefore, 
we added a new domain, termed workplace stigma, 
to the framework. All authors discussed and agreed 
upon each addition or adjustment to the framework. 
We used the same approach for identifying themes in 
acknowledged limitations.

Quality Assessment
We assessed the quality of each study by using the 
COSMIN Risk of Bias Checklist (25). That checklist uses 
a modular approach dependent on whether the study 
was intended for scale development or validation and 
the aspects of the scale the study set out to validate. The 
quality of each relevant method is given a rating using 
by using a worst score counts principle (25).

Results
Our search strategy retrieved 12,879 records after 
deduplication (Figure 2). We excluded most records 

at title and abstract screening because the search 
term “discriminat*” referred to the discriminatory 
ability of prediction models or tests, rather than so-
cial discrimination. 

We found 249 records eligible for full-text re-
view. Of those, we found 41 studies that described 
the development, validation, or use of 43 unique 
outbreak disease–associated stigma scales that met 
the inclusion criteria. We included those 43 scales in 
this review.

Overview of Scales
Of the 43 included scales, 42 (98%) were newly de-
veloped specifically for the outbreaks of concern (Ap-
pendix Table 4); 38 (88%) were used only once in the 
published literature. The scales were used in 27 dif-
ferent countries.

Thirty-two (74%) scales focused on COVID-19–
associated stigma, 7 (16%) assessed EVD-associated 
stigma, 2 (5%) were SARS-associated, and 1 (2%) scale 
each was used in Lassa fever, long COVID, and Zika 
virus disease. Those scales were published a median 

522 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024

Figure 2. Diagram of studies included in and excluded from a systematic review of scales for measuring infectious disease–related 
stigma. Reviews were performed in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 
guidelines (20). PsycINFO is a database of the American Psychiatric Association (https://www.apa.org/pubs/databases/psycinfo).



Scales for Measuring Disease–Related Stigma

of 25 (interquartile range 18–30) months after the first 
case of a given outbreak.

Almost half (21 [49%]) of the scales were based 
on HIV literature and existing HIV stigma scales (Ap-
pendix Table 4). Only 9 (21%) scales included primary 
qualitative data in the scale development processes. 
The Long COVID Stigma Scale (26), was the only 
scale explicitly codeveloped with affected commu-
nity members.

Content of Scales
We identified 24 domains of stigma in the included 
scales by using the framework synthesis process (Ta-
ble 3). Those domains included 3 distinct stigma ex-
periences: prejudice, discrimination, and avoidance 

of persons beyond suggested public health measures. 
Those stigma experiences were enacted by different 
groups, including family and friends (social stigma), 
broader community and strangers (public stigma), 
colleagues and employers (occupational stigma), ser-
vice providers (provider-related stigma), and institu-
tions (structural stigma). Our final framework also 
included the internalization of stigma (self-stigma), 
avoidance of stigma (anticipated stigma), and stig-
matization of persons associated with the disease 
but not directly infected (stigma-by-association). The 
most common domains were public prejudice, public 
discrimination, and self-prejudice. Provider-related, 
occupational, and anticipated prejudice were infre-
quently included in the scales (Figure 3).
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Table 3. Definitions and example scale items for each domain identified in a systematic review of scales for measuring infectious 
disease–related stigma* 
Action-oriented stigma 
domains† 

Experiential stigma domains 
Prejudice‡ Discrimination§ Medically unwarranted avoidance¶ 

Social: stigmatization by 
friends and family 

“I feel blamed by relatives or 
friends,” Self-stigma Scale 

(SSS-15) 
“[I was] forced to change residence 

because of social alienation,” 7-
item EVD-related stigma index 

“People I cared for stopped calling 
or interacting after learning that I 
was infected/suspected,” COVID-

19 Stigma Scale 
Public: stigmatization by 
broader community and 
strangers 

“Most people think that a person 
who has had Ebola is 

disgusting,” Ebola/COVID-19–
related Stigma Survey 

“I have been insulted/discriminated 
because of my history of being 
infected/suspected,” COVID-19 

Stigma Scale 

“Some people avoid touching me 
even after my recovery once they 

knew I was infected 
with/suspected,” COVID-19 stigma 

scale 
Workplace: stigmatization 
by colleagues and 
employers 

“My feeling of job security has 
been affected by my illness,” 
COVID-19 Perceived Stigma 

Scale-22 (CPSS-22) 

“I will dismiss my employee who 
recovers from COVID-19,” Social 

stigma and discriminatory attitudes 
scale 

“Someone refused to buy products 
from you,” Stigmatization related to 

EVD and COVID-19 scale 
Provider-related: 
stigmatization by service 
providers 

“You feel it is not worthwhile for 
you to serve persons who 

contracted COVID-19” - Stigma 
Discrimination Scale (SDS-11) 

“[I was] treated unfairly by 
healthcare professionals,” COVID-

19 Experienced DISCrimination 
Scale (CEDISC) 

“I was denied health care services 
when the doctors found out I was 
infected /suspected,” COVID-19 

Stigma Scale 
Structural: stigmatization 
by institutions 

NA “The first COVID-19 patient in each 
city should be identified and 
penalised due to their role in 

spreading the disease,” COVID-19-
related enacted Stigma 

Questionnaire 

“At the hospital/clinic, I was made 
to wait until the last,” Ebola-related 

stigma instrument 

Self: internalization  
of stigma 

“Having had COVID-19 infection 
makes me feel that I am a bad 

person,” COVID-19-related 
Stigma Survey 

“I stopped eating with other 
people,” Ebola-related stigma 

instrument 
NA 

Anticipated; disclosure 
concerns or avoidance 
due to fear of stigma 

“I worry that people may judge 
me negatively when they find 
out I have long Covid,” Long 
COVID Stigma Scale (LCSS) 

“You have avoidance behaviours 
such as staying home for fear of 
being stigmatised or rejected,” 

Stigmatization related to EVD and 
COVID-19 scale 

NA 

Stigma-by-association; 
stigmatization of those 
societally associated with 
the disease or infected 
persons but not 
personally infected 

“If they knew about it would your 
neighbors, colleagues or others 
in your community think less of 

your family because of your 
COVID-19 infection?” Arabic 
Explanatory Model Interview 

Catalogue (EMIC) 

“A school refused to accept your 
children,” Stigmatization related to 

EVD and COVID-19 scale 
“If a person was infected with 
COVID-19, it is better to avoid 

his/her family members,” 
Community COVID-19  

Stigma Scale 

*Framework based on stigma typology from Jones and Corrigan (6). EVD, Ebola virus disease; NA, not applicable. 
†Domains adopted from Pescosolido and Martin (27). 
‡Negative thoughts and feelings toward stigmatized persons. 
§Enactment of prejudice or differential treatment of stigmatized persons. 
¶Neglect of stigmatized persons. 
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More than one quarter (14 [28%]) of scales includ-
ed items that deviated from widely accepted defini-
tions of stigma, including the definition used in this 
review (Figure 1). Those scales considered adoption 
of recommended preventive measures (e.g., people 
should stay away from those infected with COVID-19) 
and limited knowledge of disease (e.g., COVID-19 
only affects the elderly) as evidence of stigmatization.

Sixteen (37%) scales asked participants whether 
they endorsed or participated in stigmatization to-
ward others, 15 (35%) ask about participants’ own 
experiences of stigmatization, and 4 (9%) enquired 
about participants’ observations of stigmatization to-
ward others in their community. Eight (19%) scales 
included items from a mixture of those perspectives.

Psychometric Evaluation of Scales
Psychometric evaluation (i.e., assessment of validity 
and reliability) of scales was notably limited (Appen-
dix Table 5). Among the scales that underwent vali-
dation processes, none consistently met the COSMIN 
criteria for sufficient validity and reliability (21).

Approximately half (24 [56%]) the scales were 
assessed by both relevant professionals and commu-
nity members before administration. Only 3 studies 
(28–30) reported formal content validity scores. Ac-
cording to the COSMIN criteria (21), all scales had 
indeterminate or inconsistent content validity by our 
definitions (Table 2).

Among included scales, 20 (47%) had been tested 
for structural validity, and 12 (60%) met the COS-
MIN criteria for sufficient validity (21). Five (12%) 
scales had been evaluated for construct validity us-
ing hypotheses testing, all of which met the suffi-
ciency criteria (21). Six (14%) scales had been assessed 
for test-retest reliability, and 3 (50%) were deemed  

sufficient (21). No studies assessed responsiveness, 
that is, the ability of an instrument to detect change in 
a construct over time (21).

For 32 (74%) scales, authors had reported on in-
ternal consistency, and most used Cronbach α coef-
ficients. However, because the structural validity of a 
scale needs to be confirmed before internal consisten-
cy can be tested (21), we could only consider 17 (53%) 
of those scores. Of those 17 scales, 4 (24%) had α<0.7, 
suggesting inadequate internal consistency (31).

Transferability of Scales
Only 1 scale, the Stigmatization Related to EVD and 
COVID-19 Scale (1), was used across different out-
breaks. However, that scale is not publicly available, 
and we had to request it. In addition, the COVID-19–
Related Stigma Survey administered in India and 
Bangladesh (32,33) is closely related to the Ebola-
Related Stigma Scale administered in Liberia (34) 
and adopted 14 of the original scale’s 16 items. Three 
scales were administered in >1 country. Six scales 
were used across different participant profiles (i.e., 
community members with and without lived experi-
ence of the disease). No scales had sufficient evidence 
of cross-cultural equivalence when we reviewed 
them using a cross-cultural equivalence framework 
(23) (Table 4).

Acknowledged Limitations of Included Studies
Authors of the included studies commonly ac-
knowledged inadequate validation of the stigma 
scales as a limitation. Most studies also noted the 
inability to establish causality because of the adop-
tion of a cross-sectional study design. In addi-
tion, more than half of the studies expressed con-
cern about the generalizability of their findings  
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Figure 3. Frequency of 
inclusion of domains of stigma 
in a systematic review of 
scales for measuring infectious 
disease–related stigma. Graph 
displays existing scales from 
framework synthesis. Action-
oriented stigma domains 
included the following: social, 
stigmatization by friends and 
family; public, stigmatization 
by broader community and 
strangers; occupational, 
stigmatization by colleagues 
and employers; provider-
related, stigmatization by 
service providers; structural, 
stigmatization by institutions; self, internalized stigma; anticipated, disclosure concerns or avoidance due to fear of stigma; 
nonspecific actor, item does not specify who is enacting stigma.
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because they used nonrepresentative sampling 
techniques and had undercoverage bias for certain 
subpopulations.

Quality Assessment of Studies
For 35 studies that described scale development, we 
found that 7 (20%) received a doubtful quality rating 
for those methods according to the COSMIN Risk of 
Bias Checklist (25), and we rated the rest inadequate 
(Appendix Table 5). We found similar ratings for stud-
ies that aimed to content validate an existing scale. 
Conversely, we found that structural validity, inter-
nal consistency, test-retest reliability, and hypotheses 

testing methods more commonly received very good 
or adequate quality ratings, but those methods were 
infrequently conducted.

Discussion
We found that numerous scales have been developed 
to assess outbreak-related stigma and that those scales 
have been used in a wide range of geographic set-
tings. That finding illustrates a global recognition and 
concern about the stigma associated with infectious 
disease outbreaks and potential adverse impacts of 
stigma. However, shortcomings in the development, 
validation, and use of those scales mean that stigma is 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 525

 
Table 4. Transferability of scales determined by a systematic review of scales for measuring infectious disease–related stigma* 

Scale name 
Transferability 

Cross-national Cross-outbreak Participant profile† 
Stigmatization related to EVD and COVID-19 scale Used; IE Used; IE Not used; A 
Ebola-related Stigma Scale Not used; U Not used; A Not used; A 
COVID-19–related Stigma Survey Used; IE Not used; A Not used; A 
COVID-19 Stigma Scale Not used; U Not used; U Not used; A 
Community COVID-19 Stigma Scale Not used; U Not used; U Not used; A 
7-item EVD-related Stigma Index Used; IE  Not used; A Used; IE 
Eight-item Stigma Scale Not used; U Not used; A Not used; A 
Arabic Explanatory Model Interview Catalogue (EMIC) Not used; U Not used; U Not used; A 
COVID-19 Stigma Instrument-Patients (CSI-P2) Not used; A Not used; A Not used; A 
The Perceived Courtesy Stigma Sub-scale Not used; U Not used; A Not used; U 
The Affiliate Stigma Sub-scale Not used; A Not used; U Not used; A 
Modified 12-item HIV Stigma Scale Not used; U Not used; A Not used; A 
Ebola-related Stigma Instrument Not used; A Not used; U Not used; A 
Stigma Discrimination Scale (SDS-11) Not used; U Not used; A Used; IE 
Self-stigma Scale (SSS-15) Not used; A Not used; A Not used; A 
COVID-19 Bullying Scale Not used; U Not used; U Used; IE 
COVID-19 Experienced DISCrimination Scale (CEDISC) Not used; U Not used; U Not used; A 
Covid-19 Internalised Stigma Scale (COINS) Not used; U Not used; U Not used; A 
COVID-19 Responsibility Attribution Scale Not used; A Not used; A Not used; A 
COVID-19 Attitudes Scale Not used; A Not used; A Not used; A 
SARS Social Life and Services Stigma Self-report Questionnaire Not used; A Not used; A Used; IE 
SARS Discrimination in the Workplace Self-report Questionnaire Not used; A Not used; A Used; IE 
Stigma toward EVD Survivors Scale Not used; U Not used; U Not used; U 
EVD Stigma Index Not used; U Not used; U Not used; A 
COVID-19-related Enacted Stigma Questionnaire Not used; A Not used; A Not used; A 
Discrimination in Medical Settings Scale Not used; U Not used; U Not used; A 
30-item Bullying during the COVID-19 Pandemic Questionnaire Not used; A Not used; U Not used; U 
Stigmatising Attitudes Scale Not used; A Not used; A Not used; A 
COVID-19 Stigma Scale (COVID19SS) Not used; A Not used; U Not used; U 
COVID-19 Perceived Stigma Scale-22 (CPSS-22) Not used; U Not used; U Not used; A 
Public Attitudes toward Stigma Questionnaire Not used; A Not used; A Not used; A 
Perceived Stigmatization of COVID-19 Scale Not used; A Not used; A Not used; A 
Modified Version of the KAP Survey Tool on Zika Virus Disease Not used; U Not used; U Not used; U 
Public COVID-19-related Stigma toward Patients Measure Not used; U Not used; U Not used; U 
Public COVID-19-related Stigma toward Wuhan People Measure Not used; A Not used; A Not used; U 
EVD-related Stigma Scale Not used; A Not used; U Used; IE 
COVID-19 Public Stigma Scale Not used; U Not used; A Not used; A 
Social Stigma and Discriminatory Attitudes Scale Not used; U Not used; U Not used; A 
Long COVID Stigma Scale (LCSS) Not used; U Not used; A Not used; A 
Modified Measure of Disease-Related Stigma (MDRS) Scale Not used; A Not used; A Not used; A 
Lassa Fever-associated Stigmatization Scale Not used; U Not used; A Not used; U 
The Social Stigma Scale Not used; A Not used; A Not used; A 
COVID-19 related Social Stigma Scale Not used; A Not used; A Not used; A 
*Insufficient evidence (IE) indicates insufficient evidence of cross-cultural equivalence and transferability as assessed using cross-cultural equivalence 
framework devised by S.A.M. Stevelink and W.H. Van Brakel (23) (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/30/3/23-0934-App1.pdf). A, 
substantial adaptations anticipated for cross-cultural use; U, appears readily usable.  
†Usability for persons with and without a personal history of the disease. 
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being incompletely and unreliably measured during 
outbreaks and that comparison of experience across 
outbreaks is not possible.

We found that, according to the COSMIN Risk of 
Bias Checklist (25), the quality of scale development 
and content validation methods were inadequate or 
doubtful for all studies. Similarly, several other forms 
of psychometric assessment (e.g., test-retest reliabil-
ity) were not performed on most scales, which could 
be because of shortcuts taken in best practices in re-
search methods because of the perceived urgency of 
an outbreak. However, those shortcuts compromise 
the validity of study findings. Thus, psychometric val-
idation using best-practice guidelines (31,35) should 

be more rigorously applied to stigma scales and rou-
tinely reported. Of the scales reviewed, the Perceived 
Courtesy Stigma Scale and the Affiliate Stigma Scale 
(36) had the most evidence of sufficient validity and 
reliability, although the content and cross-cultural va-
lidity and responsiveness should be assessed during 
future use of those scales.

In addition, we noted a lack of repeated use of 
scales across diseases and settings, despite similarity 
in scale content and derivation from the same HIV-re-
lated stigma scales. That finding represents a missed 
opportunity to maximize scale development efforts, 
strengthen the evidence base of a scale, and expand 
understanding of the common impacts of stigma 
across outbreaks (11,14,18).

The fact that half the scales were derived from 
HIV scales also raises concerns about scale valid-
ity when applied to acute outbreaks. For example, 
stigma-by-association questions specific to sexual 
partners or groups at high risk for HIV infection 
might not be appropriate in other outbreaks. Simi-
larly, questions about avoidance might not account 
for mandated isolation of affected persons in cer-
tain outbreaks, which could explain the misuse of 
items such as “people should stay away from those 
infected with COVID-19” and other key preventive 
measures as markers of stigma in more than one 
fourth of scales we reviewed. That misuse could 
be avoided by adopting theoretical frameworks 
in scale design by using formal content validity 
scoring processes (31) and ensuring that the scales 
are informed by qualitative data from in-depth or  
semistructured interviews with end users and  
other stakeholders (25).

Stigma scales tended to capture more advanced 
forms of stigmatization, such as public discrimination 
and the internalization of persistent stigma (i.e., self-
stigma). Poor detection of the potential precursors of 
those forms of stigma, such as social, occupational, 
or provider-based prejudice, were not investigated; 
however, if identified, those precursors could be tar-
geted before action, thereby reducing the detrimen-
tal effects of stigma on outbreak control and patient 
well-being (8).

In addition, the high frequency of stigma-by-as-
sociation as a theme in the reviewed scales recognizes 
that noninfected community members are not only 
potential stigmatizers but might also be stigmatized. 
Therefore, the current practice, which gives scales 
about stigma experiences to persons who have had 
the disease but gives noninfected community mem-
bers scales asking about endorsement of stigma, is a 
false dichotomy. Persons can be both a stigmatizer 
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Table 5. Recommendations for future outbreak stigma scales 
determined by a systematic review of scales for measuring 
infectious disease–related stigma 
Area Recommendations 
Design A theoretical framework of stigma should be 

applied from conception of the scale to ensure all 
relevant domains of stigma are represented. 

 Future scales should be co-designed with persons 
with lived experience of outbreak-associated 
stigma. 

 Scale items should be informed by qualitative 
research alongside existing scales. 

 When resources allow, scale design should be 
informed by a range of outbreak diseases and 
settings to enhance transferability of the scale. This 
should be facilitated by large public health 
institutions. 

 Established best practices for ensuring cross-
cultural equivalence (e.g., [23]) should be followed 
when translating and adapting scales for cross-
contextual use. 

Validation Scale items should be formally assessed for 
content validity (including clarity, relevance, and 
comprehensiveness) by both experts in the field 
and relevant community members with lived 
experience of stigma. 

 Confirmation of the structural validity of scales 
should precede internal consistency testing. Other 
forms of reliability, including test-retest reliability, 
should be routinely assessed alongside internal 
consistency. 

 The cross-cultural validity of scales should be 
assessed across countries, diseases, and 
respondent profiles using multi-group factor 
analyses or Differential Item Functioning analyses. 

 The responsiveness of scales should be assessed 
to ensure they have the ability to detect changes in 
stigma over time. 

Use Scales should be used in longitudinal and pre- and 
post-interventional studies to assess stigma trends 
over the course of an outbreak, rather than limited 
to cross-sectional use. 

 When possible, representative sampling 
techniques should be adopted in administration of 
stigma scales. 

 The results of studies assessing stigma during 
outbreaks, as well as the stigma scales used, need 
to be rapidly publicly disseminated with minimal 
access barriers such as paywalls. 
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and be stigmatized (8). That false dichotomy could be 
overcome by using items that are distanced (i.e., less 
personal) from the respondent, such as case vignettes 
or questions about third-person observations (37). 
Those types of items enable all community members, 
regardless of disease status, to answer a wider range 
of questions while reducing social desirability bias. 
Another option, drawing from the HPTN 071 (Po-
pART) trial (38), is to use multiple scales in parallel 
to separately ask persons with lived experience of the 
disease, healthcare workers, and other community 
members about experienced and endorsed stigma.

Of note, the median time from the start of an 
outbreak to publication of a relevant stigma scale 
was 2 years. That timeframe can be partially attrib-
uted to the traditionally slow peer-reviewed pub-
lication process, which is a recognized obstacle to 
efficient translational science in emerging outbreaks 
(39). However, the delay can also be attributed to 
the lengthy process involved in stigma scale devel-
opment and implementation, which often results in 
outbreak-related stigma being investigated retro-
spectively, rather than early in an outbreak, when 
the scale has the greatest potential to inform re-
sponse interventions and risk communication. The 
lack of early identification of stigma is also a major 
omission in the existing research because evidence 
suggests stigma can be most detrimental early in an 
outbreak because of heightened isolation (3,10).

Together, our findings demonstrate that the mod-
el of de novo scale development for each outbreak 
does not work in the context of emerging infectious 
diseases and leads to small, overlapping, method-
ologically weak, and slow outcomes, despite the best 
intentions of developers. As is the case with clinical 
research on emerging diseases (39), overcoming the 
challenge of stigma scale development requires an in-
novative approach.

A critical need exists for preemptive develop-
ment of a methodologically rigorous stigma scale that 
can be easily adapted for new outbreaks. Such a scale 
would enable outbreak responders to immediately in-
tegrate stigma assessment into surveillance activities 
at the onset of an outbreak. That measure should be 
developed or endorsed by international and national 
public health institutions to ensure adequate funding 
and reach of the scale, aid in cross-learning, and re-
duce duplication of efforts.

The feasibility of a standardized scale is support-
ed by the similarities in stigma manifestations across 
disease and geographic contexts. Those similarities 
are noted both in this review and in previous stigma 
literature (8,11,14). A modular approach to the scale, 

whereby additional context- and disease-specific 
items can be included as appropriate, could capture 
stigma specific to distinct outbreak settings.

Within pandemic preparedness in other fields, 
such as vaccine development and clinical research, ef-
forts to ensure rapid outbreak response includes solv-
ing for disease X, a hypothetical, undefined pathogen 
of potential consequence (40). We suggest the pre-
emptive stigma scale development and validation 
process mirror that process.

To optimize adoption and usefulness, a stigma 
scale needs to be publicly available and used in lon-
gitudinal, preinterventional, and postinterventional 
studies, rather than restricted to cross-sectional use. 
In turn, results of those studies need to be effectively 
disseminated to policymakers, response actors, and 
affected communities, which could inform the adap-
tation of response interventions to minimize associ-
ated stigma (8,10).

The limitations of this systematic review include 
that the screening strategy relied on inclusion of stig-
ma or a similar term in the title or abstract. Therefore, 
studies that used a stigma scale but did not report 
it in their abstract might have been missed. Second, 
because the review was not limited to scales in the 
English language, the local meaning and relevance 
of some of the items might have been distorted 
with translation. Finally, this review did not include 
healthcare worker–specific scales, which might more 
frequently include occupational- and provider-relat-
ed stigma items. Nonetheless, this review included an 
extensive search of the literature, without language 
or date restrictions, and provides a meaningful sum-
mary of the uses, validity, and transferability of exist-
ing outbreak stigma scales. 

In conclusion, rapid and methodologically sound 
assessment of stigma is a critical and urgently need-
ed aspect of outbreak response. This review demon-
strates a range of readily implementable improve-
ments that could be made to outbreak stigma scale 
design and use (Table 5). The data and recommenda-
tions we provide can be used to design valid and ver-
satile stigma scales for ongoing and future outbreaks.
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Prions are infectious proteins that cause fatal, in-
curable neurodegenerative diseases of humans 
and animals, which include Creutzfeldt-Jakob dis-
ease, sheep scrapie, bovine spongiform encepha-
lopathy, and chronic wasting disease of cervids. In 
2018, a newly emergent form of chronic wasting 
disease was discovered in a moose in Finland.  
Scientists performed transmissions in gene-target-
ed mice to investigate the strain properties of Fin-
land moose chronic wasting disease prions.
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University, discusses a new prion strain as a cause 
of chronic wasting disease in a Finland moose.



Persons living in long-term care facilities (LTCFs) 
have experienced disproportionate illnesses and 

deaths from the COVID-19 pandemic. By June 2020, 
>50,000 COVID-19 deaths had occurred in LTCF resi-
dents in the United States, an estimated 43% of all US 
COVID-19 deaths in a group comprising <1% of the 
US population (1). Nearly 2 years later, the COVID-19 

pandemic continues to cause disproportionate ill-
nesses and deaths in this vulnerable population and 
is responsible for >200,000 LTCF resident deaths in 
the United States (2).

Early detection of SARS-CoV-2 infection in LTCF 
staff or residents is an important strategy to mitigate 
SARS-CoV-2 transmission. Routine symptom screen-
ing of LTCF employees and residents was the prima-
ry strategy to detect infections early in the pandemic. 
However, symptom screening misses persons with 
presymptomatic or asymptomatic SARS-CoV-2 infec-
tion (3) and performs similarly to the flip of a coin for 
identifying persons with SARS-CoV-2 infection (4). 
Clinical testing, which was heavily constrained early 
in the pandemic, became the preferred screening ap-
proach as testing capacity increased in 2020. Federal 
and state guidance encouraged routine clinical test-
ing of unvaccinated asymptomatic LTCF staff with 
the frequency determined by the level of community 
transmission (5). However, routine clinical testing of 
large numbers of asymptomatic persons is expensive, 
invasive, and inefficient and may be inaccurate de-
pending on the type of clinical test used.

Wastewater surveillance provides an alternative 
strategy for SARS-CoV-2 detection by evaluating 
samples of wastewater for the presence of viral bio-
markers like RNA (6). Persons infected with SARS-
CoV-2 shed virus in their feces (7); early in the pan-
demic, scientists reported detecting the virus in the 
wastewater of urban areas (8,9). Many municipalities  
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Persons living in long-term care facilities (LTCFs) were 
disproportionately affected by COVID-19. We used 
wastewater surveillance to detect SARS-CoV-2 infection 
in this setting by collecting and testing 24-hour compos-
ite wastewater samples 2–4 times weekly at 6 LTCFs 
in Kentucky, USA, during March 2021–February 2022. 
The LTCFs routinely tested staff and symptomatic and 
exposed residents for SARS-CoV-2 using rapid antigen 
tests. Of 780 wastewater samples analyzed, 22% (n 
= 173) had detectable SARS-CoV-2 RNA. The LTCFs 
reported 161 positive (of 16,905) SARS-CoV-2 clinical 
tests. The wastewater SARS-CoV-2 signal showed vari-
able correlation with clinical test data; we observed the 
strongest correlations in the LTCFs with the most posi-
tive clinical tests (n = 45 and n = 58). Wastewater surveil-
lance was 48% sensitive and 80% specific in identifying 
SARS-CoV-2 infections found on clinical testing, which 
was limited by frequency, coverage, and rapid antigen 
test performance.



Wastewater Surveillance for SARS-CoV-2 

across the United States surveilled wastewater at 
treatment plants for SARS-CoV-2, while universities 
tested wastewater at the building level; researchers 
used the collected data to trigger enhanced clini-
cal testing that led to identifying persons with pre-
viously unknown SARS-CoV-2 infections (10,11). 
We implemented wastewater surveillance to detect 
SARS-CoV-2 infection at LTCFs and assessed its per-
formance using routine clinical testing data.

Methods

Study Population and Site Selection
We collaborated with a LTCF organization that man-
ages >100 LTCFs across the upper Midwest of the 
United States. We identified LTCF study sites on the 
basis of their proximity to our research laboratory in 
Lexington, Kentucky; their sewer system design al-
lowing for facility-specific sampling; and presence 
of SARS-CoV-2 infections. We selected 3 LTCFs in 
Lexington and 3 LTCFs in Louisville, Kentucky; each 
facility served 67–160 residents and had 76–117 staff. 
The University of Kentucky Institutional Review 
Board approved this study (IRB no. 62384).

Wastewater Collection
We collected 24-hour composite LTCF effluent waste-
water samples 2–3 times/week at Louisville sites 
and 3–4 times/week at Lexington sites. We initiated 
wastewater sampling in both cities on March 19, 2021, 
and concluded wastewater collection on Decem-
ber 17, 2021, at the Louisville sites and on February 
18, 2022, at the Lexington sites. We installed Tele-
dyne ISCO GLS composite autosamplers (https://
www.teledyneisco.com/water-and-wastewater/gls- 
compact) with 12V batteries in effluent sewer pipes 
via the manhole access closest to the LTCF. The au-
tosamplers collected 100 mL of wastewater effluent 
every 20 minutes for 24 hours. Ice packed around the 
autosampler collection jug cooled the wastewater to a 
target temperature <4°C to minimize degradation of 
nucleic acids. After a 24-hour cycle of composite sam-
pling, we transported 250 mL of the composite waste-
water sample on ice to the laboratory for analysis and 
disposed of the remaining sample in the sewer.

Before initiating wastewater surveillance at 
one LTCF, we flushed RNA encoding for jellyfish-
derived enhanced green fluorescent protein (eGFP) 
into a toilet and collected 5-minute fractionated 
wastewater samples to measure the durability of 
the RNA signal in the wastewater effluent. We 
used real-time PCR to measure eGFP RNA in the  
fractionated wastewater samples. We detected 

eGFP in the initial wastewater fraction collected 3 
minutes after flushing and in most of the wastewa-
ter fractions (11/16) over the 2-hour collection win-
dow; those findings supported the use of a 20-min-
ute sampling cadence.

Quantification of SARS-CoV-2 in Wastewater
We extracted RNA from wastewater samples on 
the same day as sample collection. To address the 
heterogeneous distribution of biologic material in 
wastewater, we analyzed 8 replicates of 250 μL 
from each wastewater sample. We used exclusion-
based sample preparation (ESP) to extract nucleic 
acids from the wastewater replicates. We previous-
ly published a detailed description of this method 
for analysis of SARS-CoV-2 RNA in wastewater 
(12). In brief, we lysed samples and added para-
magnetic particles (PMPs) (SeraSil-Mag; Cytiva, 
https://www.cytivalifesciences.com). We vortexed 
the samples, heated them at 50°C for 20 minutes, 
and then tumbled them for 20 minutes. We load-
ed these samples into an ESP device (Extractman; 
Gilson, Inc., https://www.gilson.com) with wash 
buffers and processed the replicates as previously 
described. We heated the purified PMP-RNA com-
plexes for 20 minutes at 70°C to elute the RNA. We 
tracked RNA extraction efficiency using negative 
wastewater samples spiked with known concentra-
tions of whole SARS-CoV-2 virus (BEI Resources, 
https://www.beiresources.org).

We amplified and quantified ESP-purified RNA 
via real-time quantitative PCR using the CDC- 
recommended SARS-CoV-2 N1 gene primer and 
probe sequences (13). We used positive and negative 
controls with each PCR plate for quality assurance of 
the PCR process. For the positive control, we added 
SARS-CoV-2 RNA (BEI Resources) to the reaction. 
We calculated wastewater SARS-CoV-2 concentra-
tions on the basis of quantification cycle (Cq) values 
and the Roche LightCycler 2nd derivative maxi-
mum algorithm (https://diagnostics.roche.com). 
We translated Cq values into SARS-CoV-2 genomic 
concentrations using a standard curve (r2 = 0.985) 
constructed from serial dilutions of the BEI positive-
control RNA. We reported wastewater SARS-CoV-2 
values as the arithmetic average of 8 aliquots (or the 
number of aliquots with valid results) from a given 
sample in units of genome copies per milliliter of 
wastewater (gc/mL).

Clinical Testing
Clinical testing of LTCF staff and residents for SARS-
CoV-2 occurred in accordance with LTCF policy and 
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at the discretion of individual staff choosing to test 
outside the workplace. We received deidentified pos-
itive and negative clinical test results from staff and 
residents during the study period from the 6 facilities 
with wastewater testing. The LTCF organization used 
antigen-based point of care SARS-CoV-2 tests (Binax 
Now; Abbott, https://www.abbott.com) for routine 
staff screening. Employees who sought SARS-CoV-2 
testing outside of their employer’s testing program 
were required to report their test results to the LTCF 
organization.

Testing frequency of staff and residents followed 
federal and state guidance (https://chfs.ky.gov/
cv19/LTCFSurveillanceTestingFAQs.pdf). In ac-
cordance with that guidance, LTCF-based clinical 
testing happened routinely for unvaccinated staff 
working onsite, for symptomatic residents and em-
ployees, and for all residents and staff after a posi-
tive test result in a resident or staff member at the 
facility. Frequency of testing asymptomatic unvac-
cinated staff depended on the level of SARS-CoV-2 
transmission in the county in which the facility was 
located and varied from 2 times/week (high trans-
mission) to weekly (substantial transmission) to 
monthly (moderate/low transmission) according to a 
color-coded map (https://chfs.ky.gov/agencies/os/
oig/dhc/Pages/cvltc.aspx) based on CDC transmis-
sion risk criteria (https://covid.cdc.gov/covid-data-
tracker/#county-view).

Data Analysis
We provide a descriptive summary of the waste-
water RNA concentrations and clinical test data 
using counts, proportions, means, medians, and 
SDs. When a person had 2 consecutive SARS-CoV-2 
positive clinical test results within 21 days of each 

other, we excluded the second test result from the 
final analytic dataset because it likely represented 
the same SARS-CoV-2 infection. We defined a clus-
ter of cases when >1 LTCF resident from the same 
facility tested positive for SARS-CoV-2 within 14 
days. To evaluate whether wastewater testing iden-
tified SARS-CoV-2 in LTCFs earlier than routine 
clinical screening, we conducted a lead/lag time 
correlational analysis. We estimated the correlation 
between the wastewater RNA concentration and 
the number of identified positive clinical SARS-
CoV-2 infections at each LTCF and offset clinical 
testing data by 1–7 days before and after the waste-
water data collection date.

We estimated the SARS-CoV-2 wastewater con-
tribution per known clinical case by dividing waste-
water concentrations by the number of clinical 
cases to obtain an average wastewater viral concen-
tration per clinical case. We used weekly averaged 
wastewater SARS-CoV-2 concentrations and total 
weekly clinical cases for this calculation to moder-
ate differences in sampling and testing frequency 
between facilities. We excluded weeks when there 
were no clinical cases because this would result in 
dividing by 0.

We estimated the concentration of SARS-CoV-2 
RNA in wastewater corresponding to >1 clinically 
confirmed case at an LTCF by fitting a negative bino-
mial regression model to the weekly average number 
of positive clinical tests (Appendix, https://wwwnc.
cdc.gov/EID/article/30/3/23-0888-App1.pdf). Dur-
ing the model fitting procedure, we used the log-link 
function and the total number of LTCF residents as 
the exposure variable. We used the incidence density 
ratios for positive SARS-CoV-2 test results for each 
LTCF to estimate the incidence rate or probability 
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Table 1. Characteristics of clinical and wastewater testing for SARS-CoV-2 at 6 long-term care facilities, Kentucky, USA, 2021–2022* 

Site Person Population† 
Total no. clinical 
tests (% RAT†) 

SARS-CoV-2 
positive, no. (%) 

WW surveillance 
duration, d 

WW 
samples 

WW SARS-CoV-2 
detection, no. (%) 

A Resident 75 558 (94.8) 3 (0.5) 338 160 32 (20.0)  
Staff 89 1,607 (92.8) 24 (1.5)    

B Resident 65 525 (94.3) 14 (2.7) 338 160 42 (26.3)  
Staff 85 1,475 (87.1) 31 (2.1)    

C Resident 95 2,736 (99.4) 17 (0.6) 338 160 43 (26.9)  
Staff 117 3,808 (95.4) 41 (1.1)    

D Resident 160 730 (98.9) 6 (0.8) 274 102 18 (17.6)  
Staff 106 1,965 (93.6) 12 (0.6)    

E Resident 91 625 (96.8) 1 (0.2) 274 100 18 (18.0)  
Staff 98 1,951 (93.6) 7 (0.4)    

F Resident 67 94 (43.6) 1 (1.1) 274 98 20 (20.4)  
Staff 76 831 (85.9) 4 (0.5)    

All Resident 553 5,268 (97.0) 42 (0.8) 274–338 780 173 (22.2)  
Staff 571 11,637 (92.7) 119 (1.0)    

 All 1,124 16,905 (94.0) 161 (1.0)    
*RAT, rapid antigen test; WW, wastewater. 
†Population at time of study conclusion. 
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of identifying a clinical case in an LTCF during the 
surveillance period based on the wastewater signal. 
We assumed that SARS-CoV-2 RNA detected in the 
wastewater during the surveillance day correlated 
with symptomatic or asymptomatic persons infected 
and shedding SARS-CoV-2 virus into the wastewater. 
We used weekly RNA wastewater averages because 
of the limited number of wastewater samples collect-
ed during the week.

Last, we evaluated the sensitivity and specific-
ity of wastewater surveillance for detecting SARS-
CoV-2 infections identified through clinical testing. 
We categorized wastewater samples categorized 
as either positive or negative using various SARS-
CoV-2 RNA concentration threshold values (0–250 
gc/mL). In our analysis, we defined clinical test 
positivity as a positive clinical test result observed 

during the 1-week window after each wastewater 
measurement at that facility. We constructed 2 × 2 
contingency tables to allocate positive and negative 
wastewater and clinical testing results and calcu-
lated the sensitivity and specificity of wastewater 
testing at each wastewater SARS-CoV-2 RNA con-
centration threshold. The primary analysis used 
SARS-CoV-2 infections identified in staff and resi-
dents; a secondary analysis used only resident case 
data because staff may not defecate at work and they 
isolated at home following a positive test. We used 
SAS version 9.4 (SAS Institute Inc., https://www.
sas.com) for the statistical analyses.

Results
During March 19, 2021–February 18, 2022, we col-
lected and analyzed 780 composite wastewater 
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Figure 1. Wastewater SARS-CoV-2 concentrations (genome copies/mL; blue line) and incident cases of positive clinical SARS-CoV-2 
tests (red bars for residents, gray bars for staff) from 6 long-term care facilities (A‒F), Kentucky, USA, March 2021‒February 2022.

 
Table 2. SARS-CoV-2 case clusters and associated wastewater signal characteristics at 4 long-term care facilities, Kentucky, USA, 
2021–2022* 

Characteristic 
Facility 

B C C D 
Case cluster     

No. residents infected 14 10 7 4 
Duration, d 15 47 24 13 

Wastewater signal     
Period since previous positive signal, d 6 5 6 23 
Magnitude of previous signal, genome copies/mL 250.7 29.8 177.9 6.8 
Signal on day of initial positive clinical test, genome copies/mL 208.1 NA 53.5 NA 
Time from initial case to positive signal, d 0 2 0 12 
Signal range, genome copies/mL 0–467 0–663 0–687 0–39 
Fraction of samples with SARS-CoV-2 detected 6/8 12/26 8/13 1/4 

*Case clusters were defined as >1 resident testing positive for SARS-CoV-2 within 14 d at the same facility. Two clusters occurred at the same facility at 
different time points. NA, not applicable because no wastewater sample collected that day. 
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samples from the 6 LTCFs (98–160 samples per 
facility (Table 1). An additional 31 wastewater 
samples were collected but not processed due to 
reagent shortages (n = 21), processing delays fol-
lowing winter storms (n = 9), or contamination 
during laboratory extraction (n = 1). We identified  

SARS-CoV-2 RNA in 18%–27% of wastewater sam-
ples at each facility at levels of 0–1,726 gc/mL. The 
SARS-CoV-2 wastewater signal varied over time 
and across facilities (Figure 1); positivity was great-
er during December 2022–January 2023, which also 
was when most of the positive SARS-CoV-2 clinical 
tests were reported from facilities A–C that had on-
going wastewater surveillance.

During the wastewater surveillance period, the 
LTCF organization reported the results of 16,905  
COVID-19 tests from residents (n = 5,268) and staff 
(n = 11,637) at the 6 facilities (Table 1). Residents had 
42 (0.8%) positive tests and staff had 119 (1.0%) posi-
tive tests. In 4 instances, >1 LTCF resident from the 
same facility tested positive for SARS-CoV-2 within 
14 days, which we designated as a cluster of cases. 
Clusters included 4–14 residents and lasted 13–47 
days. Wastewater positivity varied in these clusters; 
25%–75% of samples had measurable SARS-CoV-2 
RNA (Table 2).

The wastewater signal had a statistically signifi-
cant correlation with clinical testing results. Facilities 
with <20 positive clinical tests showed poor correla-
tion with the wastewater signal. However, at the 3 fa-
cilities with >20 known cases, we observed significant 
correlations across time shifts of the wastewater data 
from 7 days before to 6 days after clinical test dates 
(Figure 2). The strongest correlations occurred with 
the wastewater signal shifted 1–6 days before the clin-
ical test dates.

On average, each identified clinical case corre-
sponded to a wastewater concentration of 26.9 gc/
mL. Using a log-linear incidence density model, we 
estimated the wastewater concentration associated 
with a probability of >0.5 clinically confirmed cases to 
206–743 gc/mL (Figure 3); the estimate at the 3 facili-
ties with the largest number of clinically confirmed 
cases was 206–336 gc/mL.

A positive wastewater SARS-CoV-2 signal (>0 
gc/mL) was 30.6% (95% CI 24.4%–36.9%) sensi-
tive and 79.7% (95% CI 76.4%–82.9%) specific in 
identifying a positive clinical test result when we 
included test data from staff and residents (Figure 
4). Wastewater sensitivity improved to 48.0% (95% 
CI 36.5%–59.4%) and specificity to 79.9% (95% CI 
77.0%–82.9%) when we considered only clinical 
test data from residents. Higher wastewater sig-
nal thresholds resulted in lower sensitivity and 
higher specificity. A wastewater signal threshold 
of 30 gc/mL resulted in a sensitivity of 39.7% (95% 
CI 28.5%–51.0%) and specificity of 92% (95% CI 
89.5%–93.6%) for identifying a LTCF resident with 
a positive SARS-CoV-2 test.
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Figure 2. Time shifted (−7 to +7 days) correlation between 
wastewater SARS-CoV-2 signal and positive SARS-CoV-2 clinical 
tests at 3 long-term care facilities with >20 positive clinical tests 
(facility A = 27, facility B = 58, and facility C = 45), Kentucky, USA, 
March 2021‒February 2022.
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Discussion
We collected and analyzed >700 wastewater sam-
ples for SARS-CoV-2 from 6 LTCFs during the sec-
ond year of the COVID-19 pandemic. By pairing the 
wastewater data with clinical testing results from 
staff and residents at the 6 facilities, we evaluated 
the performance of wastewater surveillance for de-
tecting clinical SARS-CoV-2 cases in this vulnerable 
population. Wastewater surveillance demonstrated 
statistically significant correlations with clinical test 
results, and the estimated correlation was stronger 
when considering the wastewater signal as leading 
clinical case identification; those findings suggest its 
potential as an early warning indicator of infection 
in a facility. Wastewater surveillance performance 
in discriminating the presence of a positive clinical 
SARS-CoV-2 test varied depending on the waste-
water signal threshold selected and it demonstrated 
better specificity than sensitivity. 

Several factors affected the performance of LTCF 
wastewater surveillance and challenged the inter-
pretation of the wastewater data. The population 
that contributed to the wastewater at an LTCF was 
dynamic and difficult to track. Residents were ad-
mitted and discharged, staff turnover was frequent, 
staff worked across multiple facilities, residents 
were visited by family members and friends, and 
visitors passed through the facilities. The frequency 
with which staff, visitors, and residents contributed 
waste to the LTCF sewer system was not known. In 
addition, the sewer access at facility B was where the 
facility’s effluent sewage joined the sewage from an 
adjacent apartment complex. Facility B wastewater 

samples may have inadvertently included waste-
water from persons living in or visiting the apart-
ment complex, which is the likely reason for the high 
SARS-CoV-2 RNA concentrations measured in June 
2021 in the absence of identified SARS-CoV-2 infec-
tions at the facility (14).

Negative wastewater samples observed at fa-
cilities with known SARS-CoV-2–infected residents 
could be attributed to residents wearing adult briefs 
secondary to fecal incontinence. For example, dur-
ing a cluster of 10 resident SARS-CoV-2 infections 
over 13 weeks (Table 2), 3 of the residents were com-
pletely incontinent and wore adult briefs. The feces 
from those residents were disposed in biomedical 
waste receptacles rather than in the sewer system. 
Three other residents were partially incontinent. Fe-
ces from those residents also may not have entered 
the sewer system. Diversion of LTCF resident waste 
may reduce the sensitivity of wastewater surveil-
lance in this setting.

Another likely cause of a negative wastewater 
signal in the presence of known infections is the 
variability with which SARS-CoV-2–infected per-
sons shed virus in their feces. Studies done early 
in the pandemic detected virus in stool samples of 
29%–59% of persons with COVID-19 (15–17). The 
patients in those studies were hospitalized and pre-
sumably infected with nonvariant SARS-CoV-2 vi-
rus. Shedding frequency may differ in persons with 
milder or asymptomatic illness, of different ages, or 
infected with SARS-CoV-2 variants. In addition, it 
is unknown how vaccination status and previous 
SARS-CoV-2 infection affect fecal shedding. Viral 
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Figure 3. The probability of a 
positive SARS-CoV-2 clinical 
test by long-term care facility 
as a function of the average 
weekly wastewater SARS-CoV-2 
concentration (genome copies/
mL) at that facility, Kentucky, 
USA, March 2021‒February 
2022. Facility-specific curves 
are A–F; the final curve is a 
composite curve that uses data 
from all 6 facilities. Vertical blue 
lines at 400 and 600 gc/mL serve 
as reference points to identify 
site-specific wastewater signal 
thresholds when the probably of 
detecting a SARS-CoV-2 case 
is >0.5.
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shedding frequency, intensity, and duration may 
have outsized effects on building-level wastewater 
surveillance because of the small numbers of per-
sons contributing to the wastewater.

To optimize our ability to detect SARS-CoV-2 in 
LTCF wastewater, we collected 24-hour composite 
samples using a 20-minute sampling cadence. As 
described in the Methods section, the results of our 
spiking experiment suggested that a 20-minute sam-
pling cadence would capture RNA associated with 
a bowel movement flushed into the sewer system at 
an LTCF. Our sample collection schedule meant that 
we obtained wastewater samples from 37% of days 
in Louisville and 47% of days in Lexington during 
our surveillance period. Because an infected person 
shedding virus is likely to do so for many days, a 
sampling frequency of 3–4 days per week should de-
tect the case-patients who shed virus into a facility’s 

wastewater system if they remain onsite during the 
duration of their illness.

Two additional properties of the wastewater 
samples may have affected our results. First, there 
were likely inhibitors (i.e., factors that degrade 
RNA, reduce PCR efficiency, or both) in the waste-
water of the LTFCs because of laundry, kitchen, 
and janitorial activities. Detergents decreased the 
detectable signal of extracted RNA by ≈100-fold 
in 1 study (18), and detergents used by LTCF staff 
may have degraded RNA in the sewer system. We 
did not assess for the presence of specific inhibiting 
compounds and do not know how substantial their 
burden and effects were on our laboratory analy-
ses. Second, wastewater is a highly heterogeneous 
matrix, and although we made reasonable efforts to 
homogenize wastewater samples (collecting com-
posite samples, mixing composite sample before 
aliquoting sample for laboratory analysis, mixing 
laboratory sample before aliquoting for replicate 
analysis), variation in RT-PCR results across the 8 
replicates from each composite sample suggests a 
heterogeneous distribution of SARS-CoV-2 virus 
within wastewater. Strike et al. demonstrated that 
our laboratory method combined with 8 replicates 
reliably detected SARS-CoV-2 RNA concentrations 
down to 100 gc/mL, and lower concentrations were 
observed after averaging zero and nonzero data-
points (12). In our study, many samples contained a 
mixture of positive and negative replicates. In those 
cases, positive replicates were averaged together 
with negative measurements (e.g., 0 gc/mL), often 
yielding average values <100 gc/mL.

We evaluated the performance of wastewater 
surveillance against the results of intermittent and 
incomplete clinical testing of LTCF staff and resi-
dents. Our LTCF partner implemented clinical test-
ing strategies that aligned with state and federal 
COVID-19 guidance, which yielded pragmatic clin-
ical testing data. Two limitations of the clinical test-
ing protocols may have affected data quality and 
completeness. First, asymptomatic LTCF residents 
were not routinely tested; testing occurred when 
the resident had a known or suspected contact 
with a case-patient, such as a facility staff member 
who had tested positive. Similarly, vaccinated staff 
were not routinely screened. Untested but infect-
ed asymptomatic residents or vaccinated staff or a 
visitor to the facility may have caused a positive 
wastewater signal that was interpreted as a false 
positive, given the absence of known cases at the 
facility. This scenario would decrease the estimated 
specificity of wastewater surveillance. The second 
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Figure 4. Sensitivity and specificity of SARS-CoV-2 wastewater 
surveillance for identifying positive SARS-CoV-2 clinical tests as a 
function of the wastewater SARS-CoV-2 signal strength in 6 long-
term care facilities, Kentucky, USA, March 2021‒February 2022. 
A) Staff and residents; B) residents only. Shaded areas indicate 
95% CIs.
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limitation was the LTCF organization’s use of rapid 
antigen-based SARS-CoV-2 tests for screening staff 
and residents. The poor sensitivity of antigen-based 
tests, particularly in asymptomatic persons (58% by 
a Cochrane meta-analysis [19]), likely resulted in 
some false-negative clinical screening tests, which 
would decrease the estimated specificity of waste-
water surveillance.

Our study adds to the sparse literature on 
SARS-CoV-2 wastewater surveillance at LTCFs. A 
team in Italy surveilled wastewater from 5 LTCFs 
for several months at the end of 2020 and intermit-
tently detected SARS-CoV-2 RNA in the wastewa-
ter of 4 of the facilities (20). As in our study, the 
presence of residents with identified COVID-19 
infection only intermittently resulted in a positive 
wastewater signal. Researchers in Spain consis-
tently detected SARS-CoV-2 in the wastewater ef-
fluent from an elderly residence when there were 
known clinical cases in the building; however, the  
number of known cases in a week was typically 
>10 (21). An alternative environmental surveil-
lance approach in Canada using analysis of floor 
swab samples for SARS-CoV-2 demonstrated good  
discriminatory ability to identify COVID-19 out-
breaks LTCFs (22).

In summary, we found that wastewater sur-
veillance for SARS-CoV-2 performed moderately 
well when compared with clinical testing. Our cor-
relational analysis indicated that a SARS-CoV-2 
wastewater signal may precede the identification 
of clinical cases at LTCFs, which suggests that such 
testing could provide an early warning to trigger 
enhanced clinical testing or infection prevention 
activities, such as physical distancing. Optimiz-
ing wastewater collection and analysis methods 
may improve surveillance performance; however, 
viral and contextual factors such as fecal shed-
ding rates, PCR inhibitors in the LTCF wastewa-
ter, and use of adult briefs likely limit wastewater 
surveillance performance in this setting. Improved 
understanding of the many potential contribu-
tors to wastewater signal variability will enhance 
the interpretation of this emerging surveillance 
strategy, which can augment traditional infection 
detection and prevention activities in vulnerable  
LTCF populations.

This work was funded by the Centers for Disease Control 
and Prevention (contract BAA 75D301-20-R-68024).

S.B. has an ownership interest in Salus Discovery, LLC, 
which has licensed the ESP technology described in  
the text.

About the Author
Dr. Keck was faculty in the department of family and  
community medicine at the University of Kentucky during 
this study and is now based in Alaska at the Alaska  
Native Tribal Health Consortium and University of Alaska 
Anchorage. His primary research interest is environmental 
disease surveillance, to protect the health of vulnerable, 
remote, and rural communities.

References
  1. Kamp J, Mathews AW. As U.S. nursing-home deaths reach 

50,000, states ease lockdowns. The Wall Street Journal. 2020 
Jun 16 [cited 2022 May 3]. https://www.wsj.com/articles/
coronavirus-deaths-in-u-s-nursing-long-term-care-facilities-
top-50-000-11592306919

  2. Chidambaram P. Over 200,000 residents and staff in  
long-term care facilities have died from COVID-19.  
Kaiser Family Foundation; 2022 Feb 3 [cited 2022 May 3]. 
https://www.kff.org/policy-watch/over-200000- 
residents-and-staff-in-long-term-care-facilities-have-died-
from-covid-19

  3. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, 
Jacobs JR, et al.; Public Health–Seattle and King County  
and CDC COVID-19 Investigation Team. Presymptomatic 
SARS-CoV-2 infections and transmission in a skilled  
nursing facility. N Engl J Med. 2020;382:2081–90.  
https://doi.org/10.1056/NEJMoa2008457

  4. Keck JW, Bush M, Razick R, Mohammadie S, Musalia J, 
Hamm J. Performance of formal smell testing and  
symptom screening for identifying SARS-CoV-2 infection. 
PLoS One. 2022;17:e0266912. https://doi.org/10.1371/ 
journal.pone.0266912

  5. Centers for Disease Control and Prevention. Interim infection 
prevention and control recommendations for healthcare 
personnel during the coronavirus disease 2019 (COVID-19) 
pandemic. 2019 [cited 2022 Oct 9]. https://www.cdc.gov/
coronavirus/2019-ncov/hcp/infection-control- 
recommendations.html

  6. Orive G, Lertxundi U, Barcelo D. Early SARS-CoV-2  
outbreak detection by sewage-based epidemiology. Sci  
Total Environ. 2020;732:139298. https://doi.org/10.1016/ 
j.scitotenv.2020.139298

  7. Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, et al.  
The presence of SARS-CoV-2 RNA in the feces of  
COVID-19 patients. J Med Virol. 2020;92:833–40.  
https://doi.org/10.1002/jmv.25825

  8. Wurtzer S, Marechal V, Mouchel JM, Maday Y,  
Teyssou R, Richard E, et al. Evaluation of lockdown  
effect on SARS-CoV-2 dynamics through viral genome  
quantification in waste water, Greater Paris, France,  
5 March to 23 April 2020. Euro Surveill. 2020;25: 
2000776. https://doi.org/10.2807/1560-7917.
ES.2020.25.50.2000776

  9. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, 
et al. First confirmed detection of SARS-CoV-2 in untreated 
wastewater in Australia: a proof of concept for the  
wastewater surveillance of COVID-19 in the community.  
Sci Total Environ. 2020;728:138764. https://doi.org/10.1016/ 
j.scitotenv.2020.138764

10. Betancourt WQ, Schmitz BW, Innes GK, Prasek SM,  
Pogreba Brown KM, Stark ER, et al. COVID-19 containment 
on a college campus via wastewater-based epidemiology, 
targeted clinical testing and an intervention. Sci Total  

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 537



RESEARCH

Environ. 2021;779:146408. https://doi.org/10.1016/ 
j.scitotenv.2021.146408

11. Harris-Lovett S, Nelson KL, Beamer P, Bischel HN,  
Bivins A, Bruder A, et al. Wastewater surveillance for  
SARS-CoV-2 on college campuses: initial efforts, lessons 
learned and research needs. Int J Environ Res Public  
Health. 2021;18:4455. https://doi.org/10.3390/
ijerph18094455

12. Strike W, Amirsoleimani A, Olaleye A, Noble A, Lewis K, 
Faulkner L, et al. Development and validation of a  
simplified method for analysis of SARS-CoV-2 RNA in 
university dormitories. ACS ES T Water. 2022;2:1984–91. 
https://doi.org/10.1021/acsestwater.2c00044

13. Centers for Disease Control and Prevention. CDC’s  
influenza SARS-CoV-2 multiplex assay. [cited 2020 Sep 6]. 
https://archive.cdc.gov/www_cdc_gov/coronavirus/ 
2019-ncov/lab/multiplex.html 

14. Keck JW, Lindner J, Liversedge M, Mijatovic B, Olsson C, 
Strike W, et al. Wastewater surveillance for SARS-CoV-2 at 
long-term care facilities: mixed methods evaluation. JMIR 
Public Health Surveill. 2023;9:e44657. https://doi.org/ 
10.2196/44657

15. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al.  
Prolonged presence of SARS-CoV-2 viral RNA in faecal  
samples. Lancet Gastroenterol Hepatol. 2020;5:434–5. 
https://doi.org/10.1016/S2468-1253(20)30083-2

16. Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load 
dynamics and disease severity in patients infected with 
SARS-CoV-2 in Zhejiang province, China, January–March 
2020: retrospective cohort study. BMJ. 2020;369:m1443. 
https://doi.org/10.1136/bmj.m1443

17. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al.  
Detection of SARS-CoV-2 in different types of clinical  
specimens. JAMA. 2020;323:1843–4. https://doi.org/10.1001/ 
jama.2020.3786

18. Robinson CA, Hsieh HY, Hsu SY, Wang Y, Salcedo BT, 
Belenchia A, et al. Defining biological and biophysical 
properties of SARS-CoV-2 genetic material in wastewater. Sci 
Total Environ. 2022;807:150786. https://doi.org/10.1016/j.
scitotenv.2021.150786

19. Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A,  
Davenport C, et al.; Cochrane COVID-19 Diagnostic Test  
Accuracy Group. Rapid, point-of-care antigen and  
molecular-based tests for diagnosis of SARS-CoV-2  
infection. Cochrane Database Syst Rev. 2021;3:CD013705. 
https://doi.org/10.1002/14651858.CD013705.pub2

20. Davó L, Seguí R, Botija P, Beltrán MJ, Albert E, Torres I,  
et al. Early detection of SARS-CoV-2 infection cases or  
outbreaks at nursing homes by targeted wastewater  
tracking. Clin Microbiol Infect. 2021;27:1061–3.  
https://doi.org/10.1016/j.cmi.2021.02.003

21. Pico-Tomàs A, Mejías-Molina C, Zammit I, Rusiñol M,  
Bofill-Mas S, Borrego CM, et al. Surveillance of SARS-CoV-2 
in sewage from buildings housing residents with differ-
ent vulnerability levels. Sci Total Environ. 2023;872:162116. 
https://doi.org/10.1016/j.scitotenv.2023.162116

22. Fralick M, Nott C, Moggridge J, Castellani L, Raudanskis R, 
Guttman DS, et al. Detection of COVID-19 outbreaks using 
built environment testing for SARS-CoV-2. NEJM Evid. 
2023;2. https://doi.org/10.1056/EVIDoa2200203

Address for correspondence: James W. Keck, WWAMI School 
of Medical Education, University of Alaska Anchorage, 3900 
Ambassador Dr, Ste 201, Anchorage, AK 99508, USA; email: 
jwkeck@alaska.edu

538 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024

EID Podcast
Streptococcus  
dysgalactiae  

Bloodstream Infections, 
Norway, 1999–2021 

Visit our website to listen: 
https://bit.ly/3Ynwt4q 

®

Streptococcus dysgalactiae increasingly is recog-
nized as a pathogen of concern for human health. 
However, longitudinal surveillance data describ-
ing temporal trends of S. dysgalactiae are scarce. 
In this large epidemiologic study of invasive  
S. dysgalactiae bloodstream infections in western 
Norway, researchers found that S. dysgalactiae is 
rapidly emerging as a potent pathogen and cur-
rently is the fifth most common cause of blood-
stream infections in the Bergen health region.

In this EID podcast, Dr. Oddvar Oppegaard, 
an infectious disease specialist at Haukeland  
University Hospital and an associate professor at 
the University of Bergen discusses Streptococcus 
dysgalactiae bloodstream infections in Norway.



According to the Household Pulse Survey con-
ducted by the US Centers for Disease Control 

and Prevention in January 2023, up to 15% of all 
US adults had experienced >1 symptoms of post– 
COVID-19 conditions (PCC), also known as long 
COVID or postacute sequelae of SARS-CoV-2 infec-
tion (PASC) (1). Among persons with PCC, fatigue is 
frequently reported in both hospitalized and nonhos-
pitalized patients (2,3). A recent prospective cohort 
study reported 85% of patients who met its PASC 
definition had fatigue (4). A substantial percentage 
of patients with fatigue remain ill for many months 
with an illness similar to myalgic encephalomyelitis/ 

chronic fatigue syndrome (ME/CFS) (5), an unex-
plained syndrome sometimes seen after infections 
that is characterized by functional limitations that im-
pair patients’ ability to maintain daily activities and is 
associated with profound fatigue (6).

The burden, distribution, and trend of PCC can 
theoretically be measured by using prevalence and 
incidence. The prevalence of PCC is a useful mea-
sure of overall disease burden at a specific time but 
is dependent on recovery, deaths, and incidence. 
The incidence of PCC measures the rate of new 
cases over a certain period and can be valuable for 
informing public health actions to reduce new ill-
nesses. Numerous studies have estimated PCC 
prevalence, but very few have attempted to esti-
mate PCC incidence because the incidence estimate 
requires information on timing of incident event 
and a well-defined population at risk that does not 
include prevalent cases (7). Both requirements are 
challenging in the context of PCC because they con-
sist of a range of conditions and symptoms, most of 
which are not specific to PCC. To date, no diagnos-
tic biomarkers are available, and recognition of PCC 
requires integrating medical history and clinical 
findings. Recent studies also emphasize the impor-
tance of an equivalent, concurrent, non–COVID-19 
comparison group so that the effects of COVID-19 
will not be overestimated (8). Given the central role 
of fatigue in PCC and the lack of data on incidence 
of fatigue among patients who have had COVID-19, 
we conducted a study of incident fatigue diagnoses 
among patients with and without COVID-19. Our 
objectives were to estimate the incidence rates of 
fatigue and chronic fatigue; quantify the additional 
incident fatigue caused by COVID-19; assess fac-
tors associated with incident fatigue; and describe 
deaths and hospitalizations among patients with 
incident fatigue after SARS-CoV-2 infection.

Estimates of Incidence and  
Predictors of Fatiguing Illness 

after SARS-CoV-2 Infection
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This study aimed to estimate the incidence rates of 
post–COVID-19 fatigue and chronic fatigue and to 
quantify the additional incident fatigue caused by  
COVID-19. We analyzed electronic health records 
data of 4,589 patients with confirmed COVID-19 during 
February 2020–February 2021 who were followed for 
a median of 11.4 (interquartile range 7.8–15.5) months 
and compared them to data from 9,022 propensity 
score–matched non–COVID-19 controls. Among COV-
ID-19 patients (15% hospitalized for acute COVID-19), 
the incidence rate of fatigue was 10.2/100 person-
years and the rate of chronic fatigue was 1.8/100 per-
son-years. Compared with non–COVID-19 controls, 
the hazard ratios were 1.68 (95% CI 1.48–1.92) for fa-
tigue and 4.32 (95% CI 2.90–6.43) for chronic fatigue. 
The observed association between COVID-19 and 
the significant increase in the incidence of fatigue and 
chronic fatigue reinforces the need for public health 
actions to prevent SARS-CoV-2 infections.
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Methods
This study was designed as a retrospective cohort 
analysis. We analyzed electronic health records (EHR) 
data collected from the University of Washington 
(UW) that included 3 hospitals (Harborview Medi-
cal Center, UW Medical Center Northwest, and UW 
Medical Center Montlake) and >300 primary care and 
specialty clinics providing healthcare services across 
the state of Washington, USA.

Case and Control Classification
COVID-19 patients consisted of adults (>18 years 
of age) having either a positive PCR test result for 
SARS-CoV-2 or a clinical diagnosis of COVID-19 
during February 2020–February 2021 (9). A clinical 
diagnosis of COVID-19 was defined by an Inter-
national Classification of Diseases, 10th Revision, 
Clinical Modification (ICD-10-CM), diagnostic code 
of B97.29, other coronavirus as the cause of diseases 
classified elsewhere; or U07.1, COVID-19, recorded 
in the EHR during February 2020–February 2021 
(10). The index date was defined as the date of the 
first positive PCR result or the first clinical diagno-
sis, whichever was earlier.

Non–COVID-19 control patients were defined as 
adults who did not belong to the COVID-19 group 
and had >1 negative PCR for SARS-CoV-2 during 
February 2020–February 2021. The first negative test 
date is referred to as the index date. We excluded 
from this group persons with suspected COVID-19 or 
evidence of past COVID-19, including persons with 
any of the following ICD-10-CM codes: B34.2, coro-
navirus infection, unspecified; J12.82, pneumonia due 
to COVID-19; Z86.16, personal history of COVID-19; 
U09.9, post COVID-19 condition. We also excluded 
persons with a positive result on SARS-CoV-2 IgG.

Inclusion and Exclusion Criteria
Patients in both COVID-19 case and non–COVID-19 
control groups were required to survive the first 30 
days from index date; access care >1 time on or af-
ter the day 30 from the index date, defined by having 
a diagnosis code or a laboratory test; access care >1 
time during the 18 months before the index date for 
evaluation of preexisting fatigue diagnoses; and not 
be diagnosed with any codes used to define fatigue 
during the 18 months before the index date. During 
February 2020–February 2021, a total of 11,503 unique 
patients received a COVID-19 diagnosis. A total of 
4,608 COVID-19 patients were eligible for matching 
(Figure 1).

We extracted data from 15,834 non–COVID-19 
patients by querying the study database using the 

previously described inclusion and exclusion criteria, 
as well as the same requirements for accessing care. 
After data cleaning, 15,485 non–COVID-19 patients 
were determined to be eligible for matching.

Propensity Score Matching
We used propensity score matching to achieve bal-
ance in selected characteristics for COVID-19 and 
non–COVID-19 groups (11). We estimated propen-
sity score using logistic regression with 22 input 
variables of age, sex, race, ethnicity, and whether the 
person had comorbidities derived from the Charlson 
Comorbidity Index (CCI) during the 18-month period 
before the index date (Table 1) (12). We then matched 
patients on the logit of propensity score using the 
greedy method with a caliper of 0.2 SD of the logit of 
the score.

Among 4,608 patients with COVID-19 who were 
eligible for matching, 19 (0.4%) had no matched con-
trols. Among 4,589 patients with COVID-19 who had 
>1 match with 9,022 non–COVID-19 controls, 4,433 pa-
tients (96.6%) had 2 matched controls and 156 (3.4%) 
had 1. After matching, the standardized differences 
for 22 input variables used for estimating propensity 
score and for the index date were all <0.1, indicating 
between-group balances in these variables (13).

Outcome Measures
Outcome events of interest were patients with >1 di-
agnostic codes for fatigue or chronic fatigue recorded 
in the EHR during the postacute period. The post-
acute period was defined as the time between the 30th 
day since the index date and the last follow-up date 
up to January 2022.

Fatigue was defined by any of the following ICD-
10-CM or International Classification of Diseases, 9th 
Revision, Clinical Modification (ICD-9-CM), diag-
nostic codes recorded in EHR during the postacute 
period: G93.3, postviral fatigue syndrome; R53.82, 
chronic fatigue, unspecified; R53.83, other fatigue; 
780.71, chronic fatigue syndrome/postviral fatigue 
syndrome; or 780.79, malaise and fatigue. We defined 
incident fatigue as a patient who had >1 diagnostic 
code for fatigue during the postacute period.

In this study, chronic fatigue is a subset of fa-
tigue, defined as having any of the following 3 ICD-
10-CM or ICD-9-CM codes recorded in the EHR dur-
ing the postacute period: G93.3, postviral fatigue 
syndrome; R53.82, chronic fatigue, unspecified; and 
780.71, chronic fatigue syndrome/postviral fatigue 
syndrome. We defined incident chronic fatigue as a 
patient who had >1 diagnostic code for chronic fa-
tigue during the postacute period.
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Follow-Up Time and Censoring
The last follow-up date was defined as the death 
date or the last date of having a clinical diagnosis 
or laboratory test up to January 2022. The follow-
up time was calculated as time from the index date 
to the date of the first incident event for patients 
with an event, or as time from the index date to 
the last follow-up date for those without an event  
(right censoring).

Statistical Methods
We estimated incidence rates of fatigue and chronic 
fatigue for COVID-19 case and non–COVID-19 con-
trol groups using frequencies of events during the 
follow-up time, assuming a Poisson distribution of 
events. To quantify the attribution of COVID-19 to 
fatigue and chronic fatigue diagnoses, we used pro-
portional hazards models that employed robust vari-
ance estimators to adjust for dependences associated  
with matching (14).

To examine potential predictors of incident 
fatigue among 4,589 patients with COVID-19, we 
used the Clinical Classifications Software Refined 
to aggregate diseases and conditions diagnosed 
within 18 months before COVID-19 into clinically 
meaningful categories (15). We analyzed data for 
categories with prevalence >1% and used the log-
rank test to compare survival functions for each of 
the categories. We used multivariable proportional 
hazards models to identify factors associated with 
incident fatigue, adjusting for age, sex, and total 
number of comorbidities derived from the CCI 
(12,16). To assess the assumption of proportional 
hazards, we generated time-dependent covari-
ates as a function of the predictors and follow-up 
time then evaluated the covariates in the model. 
We used proportions and crude relative risk (RR) 
to compare proportions of deaths and hospital-
izations among patients with COVID-19 with fa-
tigue versus those without fatigue. We performed 
all analyses using SAS 9.4 (SAS Institute, Inc.,  
https://www.sas.com).

Human Subjects Considerations
This analysis is part of Project RELIEF (Research on 
COVID-19 Long-Term Effects). This activity was 
reviewed by the Centers for Disease Control and 
Prevention and was conducted consistent with ap-
plicable federal law and center policy. All protocols, 
procedures, and consent processes used in Project 
RELIEF were reviewed and approved by the Univer-
sity of Washington Institutional Review Board Com-
mittee A (STUDY00014595).

Results

Patients
The study population had a mean age of 49.5 years for 
cases and 49.0 years for controls (Table 1). Approxi-
mately half of the patients were women. The most 
common comorbidities were diabetes and chronic 
obstructive pulmonary disease, each with 14% preva-
lence. Approximately 55% of the population had no 
comorbidities, and 6% had 4–10 comorbidities de-
rived from the CCI.

Fatigue
During the total of 4,241.9 person-years of follow-
up of 4,589 COVID-19 cases (median 11.4 months, 
range 1–21.4 months), 434 (9.5%) incident fatigue 
cases were identified, resulting in an incidence rate 
of 10.2/100 person-years. Of the 434 case-patients, 
241 (55.5%) were women, the mean age was 52.6 
(SD 17.3) years, and 165 (38.0%) patients did not 
have comorbidities.

The incidence rate of fatigue diagnosis was high-
er among women than among men and increased 
with advancing age (Table 2). We noted no strong 
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Figure 1. Data flow for COVID-19 cases in study of incidence 
and predictors of fatiguing illness after SARS-CoV-2 infection, 
Washington, USA, February 2020–February 2021.
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evidence of a racial or ethnic difference in incidence 
of fatigue, except a slightly lower incidence among 
Black patients. Persons with more comorbidities 
experienced higher incidence rates than did per-
sons without comorbidities. However, even among 
younger persons (18–29 years of age), those without 
comorbidities, and those who were not hospital-
ized for acute COVID-19, the incidence of fatigue 
was only slightly reduced (7.3/100 person-years for 
younger persons, 7.4/100 person-years for persons 
without comorbidities, and 9.9/100 person-years for 
persons who were not hospitalized).

During the total of 7,939.1 person-years of follow-
up of 9,022 non–COVID-19 controls (median 11.5 
months, range 1–21.5 months), we identified 477 in-
cident fatigue cases, resulting in an incidence rate 
of 6.0/100 person-years. The risk of incident fatigue 
was 68% higher among COVID-19 cases than among  

non–COVID-19 controls (hazard ratio 1.68, 95% 
CI 1.48–1.92; p<0.001) (Figure 2, panel A).

Chronic Fatigue
We next examined the incidence of chronic fatigue 
diagnosis, a subset of fatigue. During follow-up, 81 
COVID-19 patients received a diagnosis of incident 
chronic fatigue, resulting in an incidence rate of 1.82 
(95% CI 1.47–2.27)/100 person-years. The incidence 
rate of chronic fatigue among non–COVID-19 controls 
was 0.42 (95% CI 0.29–0.58)/100 person-years. The 
risk of developing chronic fatigue was significantly 
higher for COVID-19 cases compared with non– 
COVID-19 controls (HR 4.32, 95% CI 2.90–6.43; 
p<0.001). The difference between cumulative inci-
dence for COVID-19 patients and non–COVID-19 con-
trols continued to increase without apparent plateau 
>12 months after the index date (Figure 2, panel B).

Predictors of Incident Fatigue
Women were 39% more likely to have a fatigue di-
agnosis than men were after adjusting for age group 
and comorbidities (Table 2). Persons of advancing 
age groups were more likely than young adults 18–29 
years of age to have a fatigue diagnosis in an unad-
justed model. After adjusting for sex and comorbidi-
ties, the HRs for advancing age groups were still el-
evated, but the differences were no longer statistically 
significant. Those with comorbidities were signifi-
cantly more likely to have incident fatigue compared 
with those with no comorbidities.

Among 36 diseases and conditions diagnosed in 
the 18 months before COVID-19 with a prevalence 
≥1% that show difference in incident fatigue (log-rank 
p<0.05), 21 conditions remained associated (p<0.05) 
with incident fatigue when each was included in a 
multivariable proportional hazards model that ad-
justed for age, sex, and number of comorbidities. 
Obesity was associated with incident fatigue in the 
simple model, but the association became nonsignifi-
cant in the adjusted model. The risk for incident fa-
tigue that was significantly higher for other diseases 
and conditions (Table 3) ranged from 27% increased 
risk for persons with hypertension to 93% increased 
risk for persons with gastritis and duodenitis.

Deaths and Hospitalizations
Patients with COVID-19 in whom incident fatigue de-
veloped had far worse clinical outcomes, as evidenced 
by deaths and hospitalizations, than patients without 
fatigue (Figure 3). Among 434 COVID-19 patients in 
whom fatigue developed, 111 (25.6%) were hospital-
ized >1 times during the postacute period, whereas 
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Table 1. Characteristics of patients with COVID-19 and matched 
controls in study of incidence and predictors of fatiguing illness 
after SARS-CoV-2 infection, Washington, USA, February 2020–
February 2021* 

Description 
Patients,  
n = 4,589 

Controls,  
n = 9,022 

Age, y, mean (SD) 49.5 (17.8) 49.0 (18.0) 
Sex   
 F 2,248 (49.0) 4,447 (49.3) 
 M 2,341 (51.0) 4,575 (50.7) 
Race   
 Asian 418 (9.1) 807 (8.9) 
 Black 704 (15.3) 1136 (12.6) 
 Indian/Alaska native 97 (2.1) 153 (1.7) 
 Native Hawaiian Pacific 82 (1.8) 119 (1.3) 
 White 2,942 (64.1) 5,825 (64.6) 
 Missing 346 (7.5) 982 (10.9) 
Ethnicity   
 Hispanic/Latino 613 (13.4) 1,166 (12.9) 
 Not Hispanic/Latino 3,709 (80.8) 7,033 (78.0) 
 Missing 267 (5.8) 823 (9.1) 
Underlying conditions†   
 Acute myocardial infarction 90 (2.0) 147 (1.6) 
 History of myocardial infarction 97 (2.1) 149 (1.7) 
 Congestive heart failure 289 (6.3) 490 (5.4) 
 Peripheral vascular disease 257 (5.6) 451 (5.0) 
 Cerebrovascular disease 231 (5.0) 410 (4.5) 
 COPD 667 (14.5) 1,259 (14.0) 
 Dementia 73 (1.6) 122 (1.4) 
 Hemiplegia or paraplegia 99 (2.2) 178 (2.0) 
 Diabetes 678 (14.8) 1,262 (14.0) 
 Diabetes with complications 354 (7.7) 635 (7.0) 
 Moderate–severe renal disease 400 (8.7) 715 (7.9) 
 Mild liver disease 318 (6.9) 559 (6.2) 
 Moderate–severe liver disease 46 (1.0) 81 (0.9) 
 Peptic ulcer disease 43 (0.9) 71 (0.8) 
 Rheumatologic disease 81 (1.8) 128 (1.4) 
 HIV/AIDS 129 (2.8) 218 (2.4) 
 Any malignancy, except skin 382 (8.3) 677 (7.5) 
 Metastatic solid tumor 111 (2.4) 193 (2.1) 
*Values are no. (%) except as indicated. Race includes no information on 
Hispanic ethnicity. COPD, chronic obstructive pulmonary disease. 
†Diagnosed in the 18 mo before date of COVID-19 confirmation or date of 
negative test. 
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13.6% of 4,155 patients without incident fatigue were 
hospitalized (RR 1.88, 95% CI 1.57–2.24; p<0.001). 
Moreover, COVID-19 patients with incident fatigue 
were at higher risk of dying (23/434, 5.3%) during the 
postacute period than were COVID-19 patients with-
out incident fatigue (94/4,155 [2.3%]; RR 2.34, 95% 
CI 1.50–3.66; p<0.001).

Discussion
In this community-based cohort study of >4,500 
adults followed for an average of 11.4 months after 
COVID-19 infection, fatigue developed in 9%. Even 
among persons not hospitalized for acute COVID-19 
or those without comorbidities, the incidence of 
post–COVID-19 fatigue approached 10% per year. 
COVID-19 patients had 1.68 times the risk for fa-
tigue in the follow-up period compared with concur-
rent, matched non–COVID-19 controls. The risk for 
chronic fatigue was even more marked: patients with  
COVID-19 had 4.32 times the risk for chronic fatigue 
than did controls.

This study provides new estimates of the inci-
dence rate of fatigue using person-years of follow-
up of at-risk patients after COVID-19 infection. Our 
data can be put in the context of previous reports. A  

retrospective study of EHR data reported 12.8% of 
patients had received a diagnosis of incident fatigue 
within 6 months of COVID-19 infection (17). That re-
port had a different follow-up time and did not de-
scribe whether preexisting fatigue cases were excluded 
from the incident fatigue counts, which might explain 
their higher proportion than our estimate of 9.5%. 
In another retrospective study of insurance claims 
where preexisting fatigue diagnoses were excluded 
from the incident event count, 4.6% of COVID-19 pa-
tients received a diagnosis of fatigue during the fol-
low-up of <6 months (18). That proportion approach-
es our estimate of 5% cumulative incidence of fatigue  
for 6 months.

An incidence rate of 4.2/100 person-years for 
post–COVID-19 fatigue was reported from Germa-
ny (19). That study counted cases occurring from 3 
months after infection, which potentially contributed 
to lower event counts. Of note, follow-up times for 
patients with an incident event were assigned on the 
basis of the calendar quarter of the insurance claim 
submission, and the follow-up times for patients 
without events were not described. A combination of 
those methodological differences might have contrib-
uted to the lower incidence estimate in that study.

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 543

 
Table 2. Incidence rate of fatigue among patients with COVID-19 in study of incidence and predictors of fatiguing illness after  
SARS-CoV-2 infection, by selected characteristics, Washington, USA, February 2020–February 2021* 

Description 
No. (%) 
patients 

Incidence rate/100 person-years 
 

Proportional hazards model 
Estimate (95% CI) p value HR (95% CI) aHR (95% CI) 

All patients 4,589 (100.0) 10.2 (9.3–11.2)     
Sex       
 F 2,248 (49.0) 11.6 (10.2–13.1) <0.01  1.29 (1.07–1.56) 1.39 (1.15–1.69) 
 M 2,341 (51.0) 9.0 (7.8–10.3) Referent  Referent Referent 
Age group, years       
 18–29 771 (16.8) 7.3 (5.5–9.7) Referent  Referent Referent 
 30–59 2,344 (51.1) 10.3 (9–11.7) 0.03  1.39 (1.02–1.90) 1.23 (0.90–1.69) 
 >60 1,474 (32.1) 11.6 (9.9–13.5) <0.01  1.56 (1.13–2.14) 1.21 (0.86–1.69) 
Race       
 Asian 418 (9.1) 11.1 (8.2–15) 0.93  1.02 (0.74–1.41)  
 Black 704 (15.3) 7.8 (5.9–10.2) 0.03  0.71 (0.53–0.96)  
 American Indian/Alaska Native 97 (2.1) 15.4 (9.1–25.9) 0.21  1.41 (0.83–2.41)  
 Native Hawaiian/Pacific Islander 82 (1.8) 6.3 (2.6–15) 0.22  0.56 (0.23–1.37)  
 White 2,942 (64.1) 10.9 (9.8–12.2) Referent  Referent  
 Missing 346 (7.5) 7.5 (4.9–11.4) 0.09  0.69 (0.45–1.06)  
Ethnicity       
 Hispanic/Latino 613 (13.4) 11.2 (8.8–14.4) 0.54  1.09 (0.83–1.42)  
 Not Hispanic/Latino 3,709 (80.8) 10.3 (9.3–11.5) Referent  Referent  
 Missing 267 (5.8) 6.2 (3.7–10.5) 0.06  0.61 (0.36–1.04)  
Hospitalized first 30 d       
 Yes 689 (15.0) 12.1 (9.6–15.2) 0.13  1.22 (0.95–1.57)  
 No 3,900 (85.0) 9.9 (9.0–11.0) Referent  Referent  
No. underlying conditions†       
 0 2,511 (54.7) 7.4 (6.3–8.6) Referent  Referent Referent 
 1–3 1,780 (38.8) 12.9 (11.3–14.7) <0.01  1.73 (1.42–2.12) 1.73 (1.40–2.13) 
 4–10 298 (6.5) 16.4 (12.3–21.9) <0.01  2.21 (1.59–3.06) 2.30 (1.63–3.24) 
*Blank cells in aHR column indicate variables not included in multivariable model. aHR, adjusted HR, obtained from multivariable proportional hazards 
model; HR, hazard ratio, obtained from simple proportional hazards model. 
†Any of the following conditions diagnosed within 18 mo before COVID-19: acute myocardial infarction, history of myocardial infarction, congestive heart 
failure, peripheral vascular disease, cerebrovascular disease, chronic obstructive pulmonary disease, dementia, hemiplegia or paraplegia, diabetes, 
diabetes with complications, moderate–severe renal disease, mild liver disease, moderate–severe liver disease, peptic ulcer disease, rheumatologic 
disease, HIV/AIDS, any malignancy except skin, metastatic solid tumor. 
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The excess risk for fatigue attributable to  
COVID-19 estimated in our study is in range of pre-
vious estimates. Specifically, our hazard ratio for fa-
tigue of 1.68 (95% CI 1.48–1.92) indicates that when 
compared with a concurrent control population with-
out COVID-19, COVID-19 contributes to a 68% in-
crease in the rate of incident fatigue. This finding mir-
rors the previous estimates in studies using EHR data 
(HR 1.65) or administrative claims data (HR 2.20, 95% 
CI 1.48–3.27) in the United States or in Germany (inci-
dence rate ratio [IRR] 1.97, 95% CI 1.89–2.06) (17–19).

This study also provides new estimates of inci-
dence rate of chronic fatigue, including ME/CFS af-
ter COVID-19 illness. The incidence rate of 1.8/100 
person-years is notable, as is the observation that 
chronic fatigue diagnoses continued in the 18 months 
of follow-up after COVID-19 detection. The extend-
ed period of incident chronic fatigue occurrences  

suggests a persistent effect but could also indicate a 
delay in diagnosing fatigue as a separate symptom or 
diagnosis. The hazard ratio for chronic fatigue (4.32, 
95% CI 2.90–6.43) indicates that COVID-19 illness re-
sults in 4.3 times the risk for chronic fatigue compared 
with non–COVID-19 group. That increase is similar to 
findings from a study of chronic fatigue syndrome in 
Germany (IRR 3.04, 95% CI 2.66–3.48) (19). Although 
chronic fatigue is not the same as chronic fatigue 
syndrome or ME/CFS, which requires additional 
symptoms for diagnosis, including activity limita-
tion, postexertional malaise, unrefreshing sleep, and 
either cognitive impairment or orthostatic intolerance 
(20), the ICD-9 and ICD-10 codes used for the diagno-
sis of ME/CFS were included in the diagnostic codes 
used to define the chronic fatigue diagnosis. The re-
cently implemented diagnostic code G93.32 for ME/
CFS when used in conjunction with code U09.9, post  
COVID-19 condition, will be instrumental in identify-
ing COVID-19–related ME/CFS in future research (21).

We found many diseases and conditions to be as-
sociated with post–COVID-19 fatigue. Those associa-
tions might provide useful prognostic information for 
the assessment of patients with COVID-19. Patients 
with mood disorders were previously reported to 
be at higher risk for illness and death during acute 
COVID-19 and increased risk of needing postacute 
care (22). Our findings indicate that patients with a 
history of mood disorders are also at increased risk 
for post–COVID-19 fatigue. The association of post–
COVID-19 fatigue with pain syndromes and sleep 
disorders is supported by previous research in non– 
COVID-19 populations (23).

Our study has several strengths, including ad-
dressing a critical data gap in incidence measure of 
post–COVID-19 fatigue; robust application of cohort 
methodologies in incidence estimation using EHR 
data; that the EHR data were collected from a com-
prehensive, multiclinic, multihospital health system; 
a well-defined population at risk for identifying the 
incident event; and the rigorous selection of concur-
rent non–COVID-19 matched controls. However, sev-
eral limitations deserve consideration. First, because 
we used EHR data for this study, our findings apply 
only to patients who access care. Future studies are 
needed to understand the incidence of post-COVID 
fatigue among those who do not access care, which 
would likely require different methods. Second, data 
on exact date of onset, duration, and severity of fa-
tigue or related functional limitations are unavail-
able for further characterization. The date of fatigue 
documented in EHR does not necessarily represent 
the date of symptom onset. In addition, providers 
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Figure 2. Cumulative incidence of fatigue (A) and chronic fatigue 
(B) among 4,589 COVID-19 cases and 9,022 non–COVID-19 
controls in study of fatiguing illness after SARS-CoV-2 infection, 
Washington, USA, February 2020–February 2021. Shading 
around data lines indicates 95% CIs.
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might continue to document fatigue or carry for-
ward the diagnosis. Therefore, relying on coding for 
chronic fatigue without an exact date of symptom on-
set might underestimate incidence of chronic fatigue. 
Moreover, the sense of fatigue is subjective and can 
be underrecorded if it is being considered as part of 
a disease process. The introduction of code U09.9, 
post COVID-19 condition, in October 2021 would not 
change results because it would need to be coded in 
conjunction with fatigue. Third, data on COVID-19 
vaccination were not recorded for most patients, pre-
cluding further analysis. Fourth, the relatively small 
number of patients with fatigue who experienced 
hospitalization or death during follow-up precluded 
further multivariable analyses to adjust for potential 
confounders. The unadjusted association between fa-
tigue and hospitalization or death might have been 
the result of the greater comorbidities seen in persons 
with fatigue. Fifth, this article is focused on post– 

COVID-19 fatigue, but PCC is generally experienced 
with multisystem symptom clusters. This study was 
not designed to capture symptom clusters, such as 
postexertional malaise or symptoms other than fa-
tigue that might also be associated with subsequent 
outcomes. Last, our data were limited to persons 
who were tested or received a diagnosis in the first 
13 months of the pandemic in Washington, which 
was 3 months before the Delta variant was detected 
and 9 months before Omicron was detected (24). 
Early research indicates that the prevalence of post– 
COVID-19 fatigue was similar across pre-Delta vari-
ants, Delta variants, and Omicron variants, but the 
prevalence of severe fatigue after infections with pre-
Delta variants was slightly higher than for other vari-
ants (25). Future research is needed to estimate inci-
dence rates of fatigue after infections with Delta and 
Omicron variants and compare them with the find-
ings from this study.
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Table 3. Associations between incident fatigue and diseases and conditions diagnosed in 18 months before SARS-CoV-2 infection 
among 4,589 patients with COVID-19 in study of incidence and predictors of fatiguing illness after SARS-CoV-2 infection, Washington, 
USA, February 2020–February 2021* 

Description 

Proportional hazards model 
Simple 

 
Multivariable† 

HR (95% CI) p value aHR (95% CI) p value 
Circulatory system      
 Essential hypertension 1.53 (1.27–1.86) <0.001  1.27 (1.01–1.59) 0.043 
Digestive system      
 Biliary tract disease 2.27 (1.43–3.59) <0.001  1.71 (1.06–2.74) 0.027 
 Gastroesophageal reflux disease and other esophageal disorders 1.53 (1.23–1.90) <0.001  1.29 (1.02–1.62) 0.032 
 Gastritis and duodenitis 2.10 (1.38–3.20) <0.001  1.93 (1.26–2.94) 0.002 
Endocrine      
 Hypothyroidism and other thyroid disorders 1.84 (1.41–2.39) <0.001  1.44 (1.09–1.89) 0.011 
 Nutritional deficiency, including vitamin D, B, iron 1.86 (1.35–2.56) <0.001  1.55 (1.12–2.15) 0.008 
 Obesity 1.55 (1.19–2.02) 0.001  1.22 (0.93–1.61) 0.156 
Musculoskeletal system and connective tissue      
 Low back pain 1.60 (1.27–2.01) <0.001  1.42 (1.13–1.79) 0.003 
 Musculoskeletal pain, not low back pain 1.74 (1.44–2.10) <0.001  1.58 (1.31–1.92) <0.001 
 Osteoarthritis 1.88 (1.46–2.41) <0.001  1.61 (1.23–2.09) <0.001 
Neoplasms      
 Neoplasms of unspecified nature or uncertain behavior 2.2 (1.56–3.11) <0.001  1.87 (1.31–2.66) <0.001 
Nervous system      
 Headache, including migraine 1.82 (1.33–2.49) <0.001  1.67 (1.22–2.29) 0.002 
 Nerve and nerve root disorders 1.91 (1.31–2.78) <0.001  1.74 (1.19–2.53) 0.004 
 Nervous system pain and pain syndromes 1.61 (1.30–1.99) <0.001  1.39 (1.12–1.74) 0.003 
 Sleep disorders 1.85 (1.49–2.28) <0.001  1.59 (1.27–1.99) <0.001 
Psychiatry      
 Anxiety and fear-related disorders 1.68 (1.35–2.10) <0.001  1.57 (1.25–1.97) <0.001 
 Depressive disorders 1.82 (1.47–2.25) <0.001  1.62 (1.30–2.01) <0.001 
 Trauma- and stressor-related disorders 1.59 (1.16–2.17) 0.004  1.46 (1.07–2.00) 0.018 
Otolaryngology      
 Otitis media 1.89 (1.04–3.44) 0.037  1.84 (1.01–3.34) 0.047 
Respiratory system      
 Acute upper respiratory infection 1.63 (1.30–2.04) <0.001  1.62 (1.29–2.03) <0.001 
 Allergic rhinitis 2.01 (1.50–2.71) <0.001  1.80 (1.33–2.43) <0.001 
 Sinusitis 1.55 (1.07–2.25) 0.021  1.56 (1.08–2.26) 0.019 
*Reference for all categories is patients without the given disease/condition. Underlying conditions: acute myocardial infarction, history of myocardial 
infarction, congestive heart failure, peripheral vascular disease, cerebrovascular disease, chronic obstructive pulmonary disease, dementia, hemiplegia or 
paraplegia, diabetes, diabetes with complications, moderate-severe renal disease, mild liver disease, moderate-severe liver disease, peptic ulcer disease, 
rheumatologic disease, HIV/AIDS, any malignancy except skin, metastatic solid tumor. aHR, adjusted HR; HR, hazard ratio. 
†Multivariable proportional hazards regression models adjusting for age, sex, and number of underlying conditions, unless otherwise noted.  
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In our unadjusted analyses, patients with  
COVID-19 who had incident fatigue were at higher 
risk for hospitalization and death than were per-
sons without incident fatigue. The severe outcome 
is likely driven, at least in part, by some of the co-
morbidities and predictors identified in this study. 
Elevated death rate was previously reported among 
fatigued patients without COVID-19 (HR 1.45) 
(26). Increased awareness of fatigue and other  
PCC is warranted to enable patients to seek early 
care when needed. Further research is also war-
ranted to investigate the causes and preventive 
measures for the severe outcomes associated with 
post-COVID fatigue.

In conclusion, our data indicate that COVID-19 is 
associated with a significant increase in new fatigue 
diagnoses, and physicians should be aware that fa-
tigue might occur or be newly recognized >1 year af-
ter acute COVID-19. Future study is needed to better 
understand the possible association between fatigue 
and clinical outcomes. The high incidence rates of fa-
tigue reinforce the need for public health actions to 
prevent infections, to provide clinical care to those in 
need, and to find effective treatments for post–acute 
COVID-19 fatigue. 
This work was supported by a contract with the Centers  
for Disease Control and Prevention (contract no. 
75D30121C10207).
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etymologia revisited
Scrapie
[skra′pe]

Scrapie is a fatal neurodegenerative disease of sheep and goats that was 
the first of a group of spongiform encephalopathies to be reported 

(1732 in England) and the first whose transmissibility was demonstrated 
by Cuille and Chelle in 1936. The name resulted because most affected 
sheep develop pruritis and compulsively scratch their hides against fixed 
objects. Like other transmissible spongiform encephalopathies, scrapie 
is associated with an alteration in conformation of a normal neural cell 
glycoprotein, the prion protein. The scrapie agent was first described as a 
prion (and the term coined) by Stanley Prusiner in 1982, work for which 
he received the Nobel Prize in 1997.
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Nontuberculous mycobacteria (NTM) infections 
are increasing globally and have thus become 

pathogens of substantial public health concern (1). 
However, because of scarce public health reporting, 
little is known about epidemiologic and environmen-
tal risk factors for NTM. Virginia is one of the few 
states in the United States where NTM infections 

are reported to a statewide public health agency (2); 
those data are uniquely suited to study the NTM bac-
terial complex. In addition, Virginia, which has areas 
of varying population density and a relatively large 
population using self-supplied domestic water (e.g., 
well water, rainwater captured in cisterns), presents 
a particularly advantageous location to study the en-
vironmental epidemiology of NTM, given its location 
in the southeastern United States, a region previously 
described as having a relatively high burden of NTM 
disease and that has areas of various geographic and 
climatic conditions: the Coastal Plains (Tidewater), 
Piedmont, Blue Ridge Mountains, Valley and Ridge, 
and Appalachian Plateau regions (3,4).

Exposure to environmental and in-home water 
sources, soil conditions and metallic content, climate, 
and coexisting medical conditions are thought to play 
complex roles in the acquisition and development of 
NTM infection (5). Numerous risk factors for NTM 
disease have been identified, including coexisting 
conditions such as compromised immunity, cystic 
fibrosis, prior cavitary lung disease, and bronchiec-
tasis; atmospheric water vapor content has also been 
identified as a predictor of NTM rates across cystic 
fibrosis centers (6,7). 

Previous studies of NTM epidemiology, often re-
lying on data from retrospective review of electronic 
medical record databases, suggest NTM are increas-
ing in incidence; the most common pathogens of clini-
cal respiratory disease belong to Mycobacterium avium 
complex (MAC) and Mycobacterium abscessus (8–10). 
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Because epidemiologic and environmental risk factors 
for nontuberculous mycobacteria (NTM) have been re-
ported only infrequently, little information exists about 
those factors. The state of Virginia, USA, requires certain 
ecologic features to be included in reports to the Virginia 
Department of Health, presenting a unique opportunity 
to study those variables. We analyzed laboratory reports 
of Mycobacterium avium complex (MAC) and M. absces-
sus infections in Virginia during 2021–2023. MAC/M. ab-
scessus was isolated from 6.19/100,000 persons, and 
2.37/100,000 persons had MAC/M. abscessus lung dis-
ease. M. abscessus accounted for 17.4% and MAC for 
82.6% of cases. Saturated vapor pressure was associ-
ated with MAC/M. abscessus prevalence (prevalence ra-
tio 1.414, 95% CI 1.011–1.980; p = 0.043). Self-supplied 
water use was a protective factor (incidence rate ratio 
0.304, 95% CI 0.098–0.950; p = 0.041). Our findings 
suggest that a better understanding of geographic clus-
tering and environmental water exposures could help 
develop future targeted prevention and control efforts. 



Predictors of Nontuberculous Mycobacteria

To date, information for epidemiologic research from 
laboratory surveillance for NTM such as MAC and M. 
abscessus has not been accessed as frequently as for 
some other pathogens of public health concern (11–
15). Despite this, population-based studies of NTM 
have found that 86% of patients meeting the Ameri-
can Thoracic Society/Infectious Diseases Society of 
America microbiologic definition of NTM lung dis-
ease also met full clinical criteria for that disease, sug-
gesting microbiologic laboratory-based data could be 
used for public health surveillance (16). We aimed to 
characterize the geographic distribution of MAC/M. 
abscessus isolates that met microbiologic criteria for 
NTM lung disease across Virginia to determine geo-
graphic clustering and model population-level de-
terminants of prevalence at the county level. For this 
epidemiologic study, we used demographic and mi-
crobiologic data from routine electronic laboratory 
reports made to the Virginia Department of Health 
during June 2021–March 2023, as part of a prospec-
tive surveillance study approved by human subject 
review boards at the University of Virginia (#HSR 
200234) and Virginia Department of Health. 

Methods 
The time period for our study encompassed multiple 
years of inherent seasonality inclusive of all months 
for which complete data were available from the 
state health department. These reports included any 
culture positive for MAC or M. abscessus from any 
laboratory within the state of Virginia. For all posi-
tive cultures, we obtained the person’s age, sex, and 
residential ZIP (postal) code, as well as the anatomic 
site of sample isolation and date of test result. Case 
counts were aggregated to the county level based on 
residential postal codes.

To investigate potential climatic and geographic 
factors associated with MAC/M. abscessus preva-
lence, we obtained mean annual saturated vapor 
pressure, mean daily maximum temperature, and 
mean annual precipitation data for each county in 
Virginia during 2021–2022 from Weather Source 
(https://weathersource.com). We extracted the per-
centage of each county using self-supplied ground-
water from US Geological Survey data from 2018, the 
most recent data available (4). Based on a recent US 
Geological Survey analysis, water source data from 
Virginia has been reliably recorded and relatively 
stable over time (17). 

Case Definitions
We defined cases of MAC/M. abscessus lung disease 
using 2020 American Thoracic Society/Infectious 

Diseases Society of America microbiologic criteria 
for NTM pulmonary disease (18). Case-patients had 
either a single MAC or M. abscessus culture isolated 
from bronchoalveolar lavage, pleural fluid, or lung 
tissue or ≥2 cultures from sputum. For persons with 
multiple cultures collected over time, we included 
case data only from the earliest culture meeting these 
criteria. We excluded data from mixed MAC and M. 
abscessus cultures or from successive cultures testing 
positive for one then the other. We excluded cases 
not meeting the microbiologic criteria for lung dis-
ease in which only 1 sputum culture contained MAC 
or M. abscessus. We excluded data from lung disease 
cases diagnosed based on nonrespiratory samples. 
We also excluded data from persons residing outside 
of Virginia. 

Statistical Analyses
We analyzed differences in age of MAC and M. ab-
scessus case-patients using Mann-Whitney U tests 
and differences in sex using χ2 tests. We obtained 
US Census Bureau data on population size, median 
age, and population density for each Virginia county 
from 2022, the midpoint of the study period (19). We 
calculated average annual prevalence of MAC/M. 
abscessus lung disease captured by laboratory sur-
veillance during 2021–2023 for the entire state of 
Virginia and for each county and independent city. 
Average annual prevalence was reported as rate per 
100,000 population. 

We generated choropleth maps to visualize to-
tal county-level MAC/M. abscessus, MAC, and M. 
abscessus infections, saturated vapor pressure, and 
percentage of county population using self-sup-
plied water. Self-supplied water comes from non-
public groundwater or surface water sources, such 
as wells or rainwater captured in cisterns. To assess 
clustering, we calculated Moran I for each map as 
a measure of spatial autocorrelation. We analyzed 
factors potentially associated with prevalence of 
MAC/M. abscessus infections in each county using 
negative binomial regression, a generalization of 
Poisson regression, to account for overdispersion. 
We adjusted population numbers using the natu-
ral log of person-years as an offset variable. We 
defined person-years as the given population (e.g., 
statewide, county) multiplied by 3 years (i.e., length 
of the study period). We included additional vari-
ables in the final model as potentially relevant epi-
demiologic confounders and environmental factors 
noted in previous investigations of NTM: sex, me-
dian age, population density, mean saturated vapor 
pressure, mean maximum temperature, mean daily 
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precipitation, and percentage of population using 
self-supplied water (3,6,8,10). We reported expo-
nentiated coefficients from the model as prevalence 
ratios. We analyzed data using SPSS Statistics 28.0 
(IBM, https://www.ibm.com) and generated maps 
using ArcGIS 3.0 (Environmental Systems Research 
Institute, https://www.esri.com). 

Results 

Statewide Results
We identified 874 persons with >1 MAC or M. absces-
sus pulmonary cultures during the 2021–2023 data 
collection period. We excluded 10 persons who re-
sided outside of Virginia, leaving data from 864 per-
sons to evaluate. We categorized 714 persons (82.6%) 
with MAC and 150 (17.4%) with M. abscessus; 331/864 
(38.3%) of those met microbiologic criteria for NTM 
lung disease. 

Case Demographics 
Median age was 69 (interquartile range [IQR] 58–76) 
years among case-patients identified with MAC/M. 
abscessus infections overall, median 64 (IQR 46–75) 
years among those with M. abscessus, and median 69 
(IQR 60–77) years among those with MAC. Only 18 
case-patients (2.1%) were <18 years of age, and 534 
(61.8%) were >65 years of age. Sex distribution for all 
case-patients was 497 (57.5%) female and 366 (42.5%) 
male (Table 1). We found no difference in sex dis-
tribution between total MAC and M. abscessus case-
patients of all ages (p = 0.934). Prevalences of MAC, 
M. abscessus, and total MAC/M. abscessus cases were 
higher for female than male case-patients >65 years 
of age but were similar compared with all other case-
patients <65 years (Figure 1). 

Geographic Distribution
Rates of MAC/M. abscessus infections varied signifi-
cantly by locality, driven by differences in distribu-
tion of MAC infections (Figure 2). MAC/M. abscessus 
cases clustered throughout the state (Moran I = 0.219, 

p<0.001) similar to MAC (Figure 2 panel C; Moran 
I = 0.210, p<0.001), especially in the central counties 
of the Piedmont region and on several peninsulas on 
Chesapeake Bay in the Tidewater region (Figure 2, 
panels A, C); we found no clear clustering of M. absces-
sus cases (Moran I = 0.01, p = 0.663) (Figure 2, panel 
E). We did find clustering in rates of self-supplied wa-
ter use (Moran’s I = 0.189, p<0.001) and mean annual 
saturated vapor pressure (Moran I = 0.820, p<0.001) 
(Figure 2, panels D, F). Self-supplied water use ap-
peared to cluster in the more rural south-central parts 
of the Piedmont region; saturated vapor pressure was 
highest in the Tidewater region in the southeastern 
part of the state. 

A regression model of county-level prevalence 
of MAC/M. abscessus infections (Table 2) showed 
saturated vapor pressure to be associated with 
prevalence of MAC/M. abscessus infections. Each 1 
millibar increase in mean annual saturated vapor 
pressure resulted in a 41.4% increase in expected 
count of MAC/M. abscessus infections (prevalence 
ratio [PR] 1.414, 95% CI 1.011–1.980; p = 0.043), 
whereas each 1% increase in the proportion of the 
county population using self-supplied water re-
sulted in a 69.6% decrease in expected MAC/M. 
abscessus infections (IRR 0.304, 95% CI 0.098–0.950; 
p = 0.041). Other population-level variables in-
cluded in the model were not significantly related 
to MAC/M. abscessus prevalence rates. A similar 
model was constructed to evaluate effects of me-
dian age, sex, population density, saturated vapor 
pressure, temperature, precipitation, and propor-
tion of self-supplied water use on prevalence of 
MAC or M. abscessus infections. Saturated vapor 
pressure was positively associated and self-sup-
plied water use was negatively associated with 
MAC infection prevalence, but none of those fac-
tors was significantly associated with M. abscessus 
infection prevalence. A model constructed to assess 
relationships between those factors and prevalence 
of MAC/M. abscessus pulmonary disease identified 
no significant association. 
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Table 1. Demographic characteristics of case-patients with MAC and Mycobacterium abscessus, by isolate, Virginia, USA, 2021–2023* 
Variable All MAC isolates M. abscessus isolates p value† 
Total 864 714 150  
Age, median, y (IQR) 69 (51–87) 69 (52–86) 64 (35–97) <0.001 
Age group, y     
 0–18 18 (2.1) 14 (2.0) 4 (2.7)  
 18–64 312 (36.1) 240 (33.6) 72 (48.8)  
 ≥65 534 (61.8) 460 (64.4) 74 (49.3)  
Sex  

  
 

 F 497 (57.5) 412 (57.7) 85 (56.7) 0.934 
 M 366 (42.4) 302 (42.3) 65 (42.7)  
*Values are no. (%) except as indicated. MAC, Mycobacterium avium complex; IQR, interquartile range 
†p values given for differences in median age and differences in sex distribution between MAC isolates by Mann-Whitney U and M. abscessus by 2 tests.  
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Discussion 
We report results of our evaluation of local and state-
wide rates of MAC/M. abscessus infection in Virginia 
using real-time, laboratory-based monitoring. We 
found that average annual prevalence of MAC/M. 
abscessus in Virginia over the study period was 6.19 
cases of MAC/M. abscessus infection per 100,000 
population and 2.37 cases of MAC/M. abscessus lung 
disease per 100,000 population. More case-patients 
were female than male, and most were older persons 
(median age 69 years), consistent with known demo-
graphics associated with NTM infection. Of note, we 
demonstrated significant geographic clustering of 
MAC/M. abscessus. We found increases in saturated 
water vapor pressure strongly associated with preva-
lence and self-supplied water use negatively associ-
ated with prevalence at the county level, independent 
of population density. 

Characterizing the epidemiology of NTM re-
mains challenging, often because of underreporting. 
Multiple studies have demonstrated the limitations 
of using diagnostic billing (International Classifi-
cation of Diseases [ICD]) codes to identify rates of 
NTM disease. Barriers include lack of clinician famil-
iarity with NTM diagnostic characteristics and vari-
able rates of need for active antimicrobial therapy, 
which might not be necessary for treatment of NTM 
lung disease, unlike for many other infectious dis-
eases (20,21). Several additional recent studies have 
evaluated laboratory-based surveillance of NTM, in-
cluding 1 study from a CDC surveillance program 
(22). Our study differed from that study in multiple 
ways. Of note, we included data from a state in 
the southeastern United States, a region not repre-
sented in the CDC surveillance data, and gathered 
comprehensive surveillance data for the entire state 

from statewide laboratories rather than individual 
sentinel laboratories. Our prevalence estimate for 
MAC/M. abscessus pulmonary disease (2.37/100,000 
population) was lower than overall NTM incidence 
seen in the CDC study (6.1/100,000 population). 
That difference might be because we included only 
MAC and M. abscessus, not other NTM, or that we 
included all laboratories statewide rather than only 
laboratories serving referral centers. Other recent 
studies based on statewide data from Missouri (23) 
and Wisconsin (24) have used laboratory-based sur-
veillance. Comparing prevalence rates based on our 
data with rates from those other studies was difficult 
because of differences in methodology and inclusion 
criteria. The Missouri study (23) reported aggregate 
period rates. The Wisconsin study (24) reported an 
overall average annual NTM incidence of 22.1–22.4 
cases/100,000 persons but included repeat positive 
samples from individual persons as separate cases. 
In multivariate modeling across those studies, socio-
economic factors were found to be associated with 
NTM rates in the Wisconsin study but not the Mis-
souri study. We lacked access to those data from 
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Figure 1. Prevalence of 
Mycobacterium avium complex 
(MAC), M. abscessus, or 
both (MAC/M. abscessus), 
categorized by age and sex, 
Virginia, USA, 2021–2023.

 
Table 2. Negative binomial regression model of county-level 
factors associated with county Mycobacterium avium complex 
and M. abscessus case prevalence, Virginia, USA, 2021–2023* 
Variable PR (95% CI) p value 
Sex   
 F 1.068 (0.957–1.192) 0.237 
 M Referent  
Median age 1.034 (0.968–1.104) 0.319 
Population density 0.893 (0.467–1.708) 0.733 
Saturated vapor pressure 1.414 (1.011–1.980) 0.043 
Groundwater use 0.304 (0.098–0.950) 0.041 
Maximum temperature 0.920 (0.771–1.099) 0.358 
Precipitation 0.992 (0.976–1.008) 0.312 
*NA, not applicable; PR, prevalence ratio 

 



RESEARCH

patients in our cohort. Our study also differed from 
the Missouri and Wisconsin studies in that it was set 
in the southeastern rather than midwestern United 
States. In addition, we included environmental ex-
posure variables not evaluated in the Missouri and 
Wisconsin studies (23,24). 

We found a higher percentage of M. abscessus 
(17.4%) among total MAC/M. abscessus infections than 
other studies of distribution of NTM based on aggre-
gate data (25), possibly because we excluded NTM 
species other than MAC and M. abscessus. Still, a recent 
study showed a range of 4.5%–21.7% widely distrib-
uted across the United States for M. abscessus (26). The 
southeast had the highest proportion of M. abscessus 
among NTM species of any US region (26), but par-
ticularly given the clinical severity of M. abscessus lung 
disease, its considerable antimicrobial resistance, and 
the difficulty of managing antimycobacterial therapy, 
further research is needed to understand why M. ab-
scessus appears to be so prevalent in that region. 

Our study explored associations between 
MAC/M. abscessus infections and local-level envi-
ronmental exposures. Previous data have shown that 
variations between locations in temperature, rainfall, 
flooding, and drought are associated with preva-
lence of NTM (27). Saturated vapor pressure has 
been shown to be the climate variable most closely 
associated with NTM prevalence (6,7). In our study, 
mean annual saturated vapor pressure was highest in 
the Tidewater region in the southeastern part of the 
state and correlated with higher local prevalence of 
MAC/M. abscessus. Of note, saturated vapor pressure 
is expected to increase globally with ongoing trends 
in climate change, highlighting the need to under-
stand how those changes might relate to risks of de-
veloping NTM lung disease. 

We also examined the relationship between 
drinking water sources and MAC/M. abscessus prev-
alence. NTM have been more commonly isolated 
from central water distribution system than ground-
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Figure 2. Geographic distribution and variables of interest for Mycobacterium avium complex (MAC) and Mycobacterium abscessus 
infections, Virginia, USA, 2021–2023. County-level prevalence (cases/100,000 person-years) of A) MAC/M. abscessus; C) MAC; and 
E) M. abscessus. B) M. abscessus distribution as a percentage of total MAC/M. abscessus infections. D) Percentage of residents using 
self-supplied water. F) Saturated water vapor pressure in millibars.  
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water sources, but this comparison has not been 
tested epidemiologically (28). However, several 
studies have shown piping from central household 
water sources to be a pathway for NTM infection 
(29,30). The source of household water is thought 
to be critical, with NTM rarely found in samples of 
clean groundwater (31). Here, we found increased 
use of self-supplied water (mostly well water) to be 
associated with lower rates of MAC/M. abscessus in-
fections in a given locality even after adjusting for 
population density. Based on our data, the effect 
size associated with water sources was even larger 
than with environmental variables, suggesting that 
water source might constitute a substantial factor in 
acquiring NTM. 

As with many studies based on laboratory sur-
veillance, our study was limited by a lack of indi-
vidual-level data regarding water sources and be-
havioral variables, and we assumed that residential 
postal codes best reflect the location of a person’s 
greatest source of exposure to water for drinking 
and bathing. However, environmental (31) and 
household (29,32) surveillance data from our study 
support that water vapor pressure and types of wa-
ter source might be factors in acquiring NTM. We 
also considered that the location of referral centers, 
particularly the cluster of counties surrounding a 
large academic hospital in central Virginia. might 
have biased our observation of geographic cluster-
ing. However, 1 study of NTM clustering across 
the United States found that neither physician-to-
patient ratio nor referral center proximity within 
an area was associated with local variations in clus-
tering of NTM prevalence (33). In addition to the 
modest underestimate of NTM lung disease when 
considering only laboratory-based microbiologic 
criteria (16), MAC and M. abscessus represented only 
73.6% of pathogenic pulmonary NTM isolates in Vir-
ginia based on earlier data from our group (34), and 
thus NTM lung disease likely carries a greater total 
population burden than we report. Furthermore, 
given our study design, we could not conclusively 
establish causation with regards to the association 
between exposure variables and outcomes of inter-
est. Finally, although recent data were available, we 
matched covariates only spatially, not temporally. 

In summary, we found a high proportion of NTM 
isolates in Virginia were MAC. Local clustering of 
MAC/M. abscessus infections within Virginia during 
the study period might be explained by differences in 
household water sources and saturated water vapor 
levels. Future studies of the geographic distribution 
of NTM should highlight variations in the distribu-

tion of different NTM species; additional controlled 
studies are needed to explore those factors and assess 
the effects of other individual-level exposures that 
might be related to developing NTM lung disease. 
Our findings suggest that a better understanding of 
geographic clustering and environmental water expo-
sures related to NTM could help inform future moni-
toring activities and development of prevention and 
control efforts targeted to populations most at risk. 
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The zoonotic Taenia martis tapeworm lives in mus-
telid intestines and has been reported across Eu-

rope (1). Human infection is thought to occur by ac-
cidental ingestion of eggs in mustelid feces and can 
lead to cysticercosis-like lesions, reported for only 6 
adults in France, Germany, and Switzerland (2–7). 
We report a T. martis neurocysticercosis-like lesion in 
a child in the Netherlands.

The Study
In 2020, an 11-year-old boy was referred to the emer-
gency department of University Medical Center 
Groningen (Gronigen, the Netherlands). Three days 
earlier, he had awakened with a frontal headache 
that intensified within 1 hour and led to nausea and 
vomiting. Symptoms resolved after sleep. On the eve-
ning of his referral to the emergency department, the 
boy suddenly became nauseous and pale, unable to 
speak, and in a decreased state of consciousness. His 
altered mental status continued for 20 minutes and 

his speech arrest for 90 minutes; a headache followed. 
No urine incontinence or tongue bite were noted. His 
medical history revealed only allergic rhinitis. He 
was an enthusiastic runner in the northern Nether-
lands woods and spent holidays in different nature 
areas of western Europe.

At the emergency department, his symptoms had 
resolved, and initial examination revealed no neu-
rologic or laboratory test abnormalities. Computed 
tomography of his brain without contrast showed a 
hypodense area in the left temporal lobe and a barely 
discernable ringlike lesion with an isointense rim, 
without calcification (Figure 1, panel A). A cerebral 
venous sinus thrombosis was excluded. Magnetic 
resonance imaging (MRI) revealed a 13-mm round le-
sion with edema in the dorsal left temporal lobe and 
a hypointense rim on susceptibility-weighted and 
T2-weighted images (Figure 1, panels B, C), suggest-
ing a fibrotic capsule, enhanced on 3-dimensional T1-
weighted images (Figure 1, panel D). On diffusion-
weighted images, no central diffusion restriction was 
seen (Figure 1, panels E, F). Initially, a brain tumor of 
undefined origin was proposed, but a second view-
ing suggested neurocysticercosis. Results of serologic 
testing of 2 samples collected 3 weeks apart, tested 
for T. solium tapeworms via a Centers for Disease 
Control and Prevention immunoblot recombinant 
antigen (rT24H antigen and LLGP) (8,9), were, how-
ever, negative.

The boy remained symptom free and because of 
the differential diagnosis of a brain tumor was referred 
to the national center for pediatric oncology in the 
Netherlands, the Princess Maxima Center (Utrecht, 
the Netherlands). Two weeks after the initial visit to 
University Medical Center Groningen, the patient 

A neurocysticercosis-like lesion in an 11-year-old boy in 
the Netherlands was determined to be caused by the 
zoonotic Taenia martis tapeworm. Subsequent testing 
revealed that 15% of wild martens tested in that region 
were infected with T. martis tapeworms with 100% genetic 
similarity; thus, the infection source was most likely local.
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underwent an uncomplicated craniotomy, and a cyst 
was extirpated in toto (Figure 1, panel G). Macroscop-
ically, the lesion appeared to be an intact cystic round 
nodule on cut section with a white-greyish central 
area surrounded by a thin capsule (Figure 1, panel 

H). Microscopic examination revealed a necrotic core 
surrounded by fibrin and fibrosis (Figure 1, panel I) 
with adjacent multinuclear foreign body–type giant 
cells and an inflammatory infiltrate including plasma 
cells and eosinophilic neutrophils (Figure 1, panel J). 
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Figure 1. Diagnostic imaging 
of the brain and cystic lesion 
resected from boy with 
neurocysticercosis-like lesion, 
the Netherlands. A) Axial 
computed tomography showing 
edema in the left temporal lobe 
with a barely visible hypointense 
round lesion with a noncalcified, 
isointense rim (arrow). B–F) Axial 
magnetic resonance images at 
slightly different levels through 
the cystic lesion with surrounding 
edema in the left temporal lobe, 
showing a hypointense ring on 
susceptibility-weighted image 
(B) using minimum intensity 
projection (arrow) and on T2-
weighted image (C), suggestive 
of a fibrotic capsule. D) Three-
dimensional T1-weighted image 
showing a slightly irregular 
enhancement of the rim. E, F) 
On diffusion-weighted image (E) 
and apparent diffusion coefficient 
map (F), the rim is isointense 
and central diffusion restriction 
is absent, excluding a bacterial 
abscess. G, H) Macroscopic 
picture of the lesion showing a 
round nodule (G) and a cyst-like 
lesion (H) on cut section with 
a white-greyish central area 
surrounded by a thin capsule. I, 
J) Microscopic images showing a 
necrotic core (1) surrounded by 
a rim of fibrosis (2) and a mixed 
inflammatory response (3) (I) 
and multinuclear foreign-body-
type giant cells (J).
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No tegument or calcareous corpuscles were seen. Af-
ter ruling out common pathogenic microorganisms, 
we determined that those features could fit well with 
the second (necrotic) stage of neurocysticercosis (10).

PCR analysis of the cyst material was performed 
by using the 12S rRNA gene as target (11) (primers: 
forward 5′-AAAIGGTTTGGCAGTGAGIGA-3′; re-
verse 5′GCGGTGTGTACITGAGITAAAC-3′) and 
with T. saginata DNA as positive control. PCR re-
vealed a tapeworm infection, and sequencing indi-
cated T. martis (Appendix, https://wwwnc.cdc.gov/
EID/article/30/3/23-1402-App1.pdf). Those find-
ings led to the final diagnosis of a stage 2 neurocysi-
cercosis-like lesion, based on the T. martis infection. 
The patient received albendazole (2×/d for 1 week). 
Follow-up MRI of the brain 1.5 months after surgery 
showed only the resection cavity, and the boy has re-
mained symptom free.

To explore potential sources, we investigated 
stone martens (Martes foina) that had been killed as 
part of ongoing predator control in 2020 and 2021 in 
Friesland, a northern province of the Netherlands. 
We checked their intestines macroscopically for T. 
martis tapeworms and collected intestinal content 
from multiple parts of the intestine to submit for mo-

lecular detection of T. martis tapeworm DNA. We 
extracted DNA from collected tapeworms and all 
intestinal scrapings by using the DNeasy Blood and 
Tissue Kit (QIAGEN, https://www.qiagen.com). We 
also performed conventional PCR targeting the CO1 
gene on the patient material, using primers previ-
ously reported (12), with slight modification of the 
primers (forward, 5′-TTTTTTGGGCATCCTGAG-
GTTTAT-3′; reverse, 5′-TAACGACATAACATAAT-
GAAAATG-3′), followed by electrophoresis using 
1.8% agarose gel PCR. We sequenced samples with 
bands matching the positive control, obtained from 
a T. martis worm collected at the start of the project, 
by using BaseClear (Leiden, https://www.baseclear.
com) and performed BLAST analysis (http://www.
ncbi.nlm.nih.gov/blast/Blast.cgi). 

Of the 214 collected stone martens, sequences 
of 32 (15%, 95% CI 10%–20%) intestinal scraping 
samples matched T. martis sequences from GenBank, 
including samples from 7 stone martens in which 
adult tapeworms were macroscopically detected and 
confirmed by PCR and sequencing to be T. martis. 
Genetic analysis showed 100% similarity between 
the T. martis sequence of the patient (GenBank ac-
cession no. OR765728) and those from the martens. 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 557

Figure 2. Phylogenetic 
analysis of the partial CO1 
gene of Taenia martis 
tapeworm samples from 
a patient, martens, and a 
squirrel in the Netherlands 
and reference sequences. 
GenBank accession numbers 
are shown when available. 
The tree is based on multiple 
alignment with Jukes and 
Cantor correction and neighbor-
joining cluster analysis. 
Branch quality was determined 
by bootstrap analysis with 
10,000 simulations. Reference 
sequences were from 
patients from Italy (GenBank 
accession no. KJ459910.1), 
Croatia (accession no. 
AB731758), France (accession 
no. KP198618.1), and 
Germany (accession no. 
JX415821). Moreover, T. 
saginata (accession nos. 
AB645845 and JQ756972), 
T. solium (accession nos. 
EF0767752 and AB033408), 
T. polyacantha (accession nos. 
EU544587 and EU544588), 
and T. taeniaeformis (accession no. EF090612) were included in the phylogenetic analysis. The cestode Spirometra erinaceieuropaei 
(accession no. AB278576) was included as outgroup. Scale bar indicates nucleotide substitutions/site.
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In addition, a T. martis sequence from larval cestode 
from a squirrel collected in 2014 in the Netherlands 
(provided by Herman Cremers) was 100% identical 
to the sequence from the patient. Sequences from T. 
martis tapeworms collected in Switzerland, Croatia, 
France, and Germany were 100% identical and from 
Italy 99.6% identical to the sequences of the martens 
from the Netherlands (Figure 2).

Conclusions
To our knowledge, human T. martis cysticercosis has 
been reported for only 6 adults. Two cases involved a 
T. martis neurocysticercosis-like lesion (2,7), and the oth-
ers involved the eye, peritoneum, and pouch of Douglas 
(3–6). All 6 patients were immunocompetent women: 5 
tended and ate from vegetable gardens, 5 lived in rural 
areas, and 3 were frequent hikers/dog owners. The boy 
we report also spent a lot of time in the forest. 

Stone martens are synanthropic mustelids and 
will eat fruit or scavenge scraps from compost heaps 
in gardens and barnyards. It is hypothesized that con-
suming contaminated vegetables or fruit or acciden-
tally ingesting T. martis eggs after contact with con-
taminated soil may lead to (neuro)cysticercosis-like 
infection caused by T. martis tapeworms.

Neurocysticercosis involves infection of the cen-
tral nervous system by the larval stage of the pork 
tapeworm T. solium (13). The MRI features for the boy 
with a T. martis neurocysticercosis-like lesion and the 
patient in France resemble those caused by T. solium 
tapeworms (2). Features depend on stage of the in-
fection (14). No specific serologic test is available for 
T. martis infection, and the extent of cross-reactivity 
between T. solium and T. martis antibodies in avail-
able serology tests is unknown. Serologic test results 
for the 6 adult patients showed mixed signals, includ-
ing positive signals against Echinococcus multilocularis 
crude larval antigen extract (that could not be repeat-
ed in confirmatory assays) (5) and T. solium (2,5), al-
though others have reported negative serologic test 
results for those parasites (3,4). Confirming the diag-
nosis requires detecting parasite DNA by PCR and 
sequencing to differentiate between Taenia species. 
The availability of differentiating molecular methods 
may have resulted in increased diagnoses of T. martis 
infections, possibly previously misdiagnosed as T. so-
lium infections (3).

The finding of T. martis tapeworms in the patient 
and the stone martens we investigated from the north-
ern part of the Netherlands strongly suggest a local 
source of infection. Although the prevalence of T. mar-
tis tapeworms can vary widely regionally (15), stud-
ies in host and reservoir species suggest widespread 

appearance of T. martis tapeworm in mustelids in Eu-
rope (1), and underrecognition and underreporting of 
cysticercosis caused by infection with this tapeworm 
is probable.
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The traditional view of restricted diversity among 
bacterial agents causing human and animal tuber-

culosis is being revised thanks to wide use of whole-
genome sequencing (WGS). Besides Mycobacterium 
canettii, representative of exceptional, nonclonal, ear-
ly-evolution branching lineages of tubercle bacilli in 
eastern Africa, several previously unknown lineages 
of M. tuberculosis complex have been identified in Af-
rica during the past decade. M. tuberculosis complex 
lineage 7 (L7) was discovered in the Horn of Africa 
and L8 in the African Great Lakes region (1,2). M. afri-
canum L9 was found only in Djibouti and Somalia. In 
contrast, 2 other major M. africanum–affiliated lineag-
es contributing substantially to the tuberculosis bur-
den, L5 and L6, are found mostly in western Africa 
(3). The pathway between eastern and western Africa 
in the evolutionary history of the bacillus remains un-
clear. We describe a newly identified sister lineage of 
L6 and L9 associated with central Africa and discuss 
implications for determining the evolutionary history 
of related M. africanum lineages L5, L6, and L9. We 
based research on publicly available data and thus re-
quired no ethics approval. 

The Study 
We used the TB-Annotator platform (G. Senelle, un-
pub. data, https://www.biorxiv.org/content/10.110
1/2023.06.12.526393v1) to integrate WGS data from 
102,001 M. tuberculosis complex isolates in the Na-
tional Center for Biotechnology Information (NCBI) 
public domain. This platform identifies genetic varia-
tions, including single-nucleotide polymorphisms 
(SNPs), regions of difference (RDs), and IS6110 inser-
tions, differentiating selected genomes from M. tuber-
culosis H37Rv. The TB-Annotator database also con-
tains information on genotypic drug resistance and 
geographic location of variant isolation. 

SNPs from an exploratory set comprising 
15,699 isolates largely of Africa origin were used to 
build a phylogenetic tree. Our analysis identified a 
lineage sister to M. africanum L6 and L9, branching 
between these lineages and the animal lineage A1 
(La_A1) (3). The newly identified lineage is repre-
sented by only 2 genomes: ERR2707158, obtained 
from a strain isolated in 2008 from a patient resid-
ing in Kinshasa, Democratic Republic of the Congo 
(DRC), now incorporated under reference ITM-
501386 (CT2008–03226) in the coordinated collec-
tions of microorganisms of the Institute of Tropical 
Medicine (Antwerp, Belgium); and ERR2516384, 
obtained from a strain isolated in Belgium in 2013 
(V. Mathys, pers. comm., email, 2023 Jul 5). The ge-
nomes of the new lineage carried none of the SNP 
markers described in the latest M. tuberculosis com-
plex lineage classification scheme (4) and no SNPs 
that confer drug resistance. 

To confirm the phylogenetic position of those 
2 genomes, we identified SNPs from 132 isolates 
covering the genetic and geographic diversity of L5 
and L6 and including representatives of all other 
lineages using the Genotube pipeline (A. Le Meur, 
pers. comm., email, 2023 Sep 15) and TB-Profiler (5). 
Resulting phylogenetic reconstruction confirmed 
the clustering of ERR2707158 and ERR2516384 in 
a branch between L6 and L9 and animal lineage 
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Analysis of genome sequencing data from >100,000 
genomes of Mycobacterium tuberculosis complex using 
TB-Annotator software revealed a previously unknown 
lineage, proposed name L10, in central Africa. Phylo-
genetic reconstruction suggests L10 could represent a 
missing link in the evolutionary and geographic migra-
tion histories of M. africanum. 



M. africanum Lineage 10, Central Africa

La_A1 (Figure). The newly designated L10 samples 
shared 375 specific SNPs with isolates from our 
selected set of 132 samples; 243/375 specific SNPs 
were not detected in any of the 102,001 genomes 
included in TB-Annotator. Among those specific 
SNPs, 91 were synonymous (Appendix 1, https://
wwwnc.cdc.gov/EID/article/30/3/23-1466-App1.
xlsx). The pairwise distance between the 2 samples 
of interest was 382 SNPs (SNPs outside of repeti-
tive regions, manually checked when discordant 
between 2 pipelines), much shorter than the dis-

tance to the other samples of our selection (mini-
mum 1,137 SNPs; average 1,591 ±222 SNPs) (Ap-
pendix 2, Figure 1, https://wwwnc.cdc.gov/EID/
article/30/3/23-1466-App2.pdf). 

We next explored other features of the genomes 
to corroborate SNP-based phylogenetic inferences. 
In addition to the deletion of RD9 shared with the 
L5/L6 branch and animal-associated lineages, the 
2 L10 genomes lacked RD7, RD8, and RD10 (3). 
However, they did not show the RD702 (L6/L9) or 
RD713 (L5) deletions. In contrast, the 2 unclassified 
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Figure. Global Mycobacterium phylogeny including newly identified M. africanum L10 (proposed) strains (green shading). We selected 
M. africanum samples for harboring RD9 deletion, having documented country of origin (for the purpose of additional analyses; Appendix 
2, Figure 2, https://wwwnc.cdc.gov/EID/article/30/3/23-1466-App2.pdf), and refined our a selection to retain a sole representative of each 
sublineage for each country. This sample represents the genetic and geographic diversity of M. africanum in Africa. Specifically for this 
phylogenetic reconstruction, single-nucleotide polymorphisms were identified in comparison with an M. tuberculosis ancestor (11) and 
reincorporated into the whole genome to avoid biases in the molecular model or need for Lewis correction. Phylogeny was rooted with 
M. canettii, subsequently removed for better visualization. Bootstrap support was computed using 100 replicates and shown when ≥0.6. 
Circles confirm the large support of almost all branches, especially of L10 and its sister branches. L10 branching point lies between L9 and 
the La_A1 lineage grouping chimpanzee and Dassie bacillus. Scale bar indicates nucleotide substitutions per site.



DISPATCHES

genomes harbored the same specific large 9,134 nt 
deletion (Rv0613c–Rv0622) in M. tuberculosis H37Rv 
(NC\_000962.3:706602–715736) not observed in any 
other lineage. This segment included the toxin/an-
titoxin gene pair vapB29/vapC29. Two other shared 
deletions encompassed eis and dnaE2 (Appendix 1), 
potentially limiting the ability to acquire aminogly-
coside resistance (6) and possibly affecting some mu-
tational properties (7) of those M. africanum strains. 
The 2 genomes also shared 4 IS6110 copies at a posi-
tion found in no other lineage (Appendix 1). In the 
CRISPR locus of the 2 L10 genomes, reconstructed 
using CRISPRbuilder-TB (8), we found the same ab-
sence of spacers 7 and 9 (43-spacer spoligotype for-
mat) seen in L6, L9, and La_A1 (Table) and all last 
spacers starting from spacers 22 (ERR2516384) or 26 
(ERR2707158) (Table). 

The genetic features of the strains we identified, 
combining outlying phylogenetic position, genetic 
distance from the L6/L9 branch and other known 
M. tuberculosis lineages, distinctive regions of dele-
tions and IS6110 insertions, and specific spoligotype 
signatures, led us to propose their classification in a 
newly designated L10 lineage. We propose 3 synony-
mous SNPs (gyrA G7901T, recN C1920096T, and dnaG 
C2621730T) compared with the H37Rv 000962.3 refer-
ence sequence in housekeeping genes to identify the 
new lineage. 

To evaluate potential regional and global circu-
lation of L10 strains, we searched for similar spoli-
gotype patterns using SITVIT2, which accumulates  
spoligotypes from >110,000 isolates from 131 
countries (9). We identified a single instance, 
BEL04200301729, showing the same spoligotype  

pattern as ERR2516384, which might represent a 
third occurrence of L10. Of note, that strain was iso-
lated in the Republic of the Congo, a country neigh-
boring DRC, where ERR2707158 was collected (Ap-
pendix 2, Figure 2). We also browsed spoligotyping 
results from next generation sequencing data, col-
lected from ≈1,500 isolates from a 2016–2017 nation-
al survey in DRC, targeted using Deeplex Myc-TB 
(https://www.deeplex.com) (10) but detected no 
similar pattern. Thus, both global (TB-Annotator 
and SITVIT2) and local (10) datasets suggested that 
L10 strains are rare at the worldwide level, and aside 
from migratory dissemination, likely restricted to 
central Africa. Mapping of M. africanum diversity in 
Africa showed that in addition to L10, central Africa 
also hosts a relatively large diversity of L5 strains 
(Appendix 2, Figure 2). 

Despite the rarity of L10, its specific phylogenet-
ic positioning and presence in central Africa provide 
new elements to the complex evolutionary history 
of M. africanum. Currently, the most likely scenario 
favors western Africa as the place of origin of all M. 
africanum variants (3). This scenario implies that L5 
and L6 ancestors emigrated from eastern Africa and 
diversified in western Africa and that L9 migrated 
back to eastern Africa. Finding L10 in central Africa 
with intermediate branching between L5 and L6/L9 
can fit this scenario but adds an independent migra-
tion from western Africa to central Africa. Alterna-
tively, M. africanum could have emerged close to cen-
tral Africa and subsequently migrated westwards 
and eastwards. This alternative scenario, however, 
would require greater sampling in central regions of 
Africa to gain real support. 
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Table. Spoligotype patterns of newly identified Mycobacterium africanum L10 (proposed) strains from central Africa compared with 
representative strains of L6, L9, and A1 lineage* 

ID Source† No. Spoligotype binary SIT 
Country of 
isolation 

L10-BEL04200301729 SITVITWEB 1 ■■■■■■□■□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□ Orph Republic of 
Congo  

L10-ERR2516384 TB-Annotator 1 ■■■■■■□■□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□ Orph Belgium‡ 
L10-ERR2707158 TB-Annotator 1 ■■■■■■□■□■■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□ Orph DRC 
L6_SIT181 SITVITWEB 208 ■■■■■■□□□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■■■■ 181 Gambia 
L9 Coscolla 2021 3 ■■■■■■□■□■■■□□□□□□□□□□□□□□□□□□□□□□■■■■□■■■■ Orph Somalia 
L9 Coscolla 2021 1 ■■■■■■□■□□□□□□□□□□□□□□□□■■■■■■■■■■□■■■□■■■■ U Djibouti 
L9_FXX01199901706 SITVITWEB 1 ■■■■■■□■□□□□□□□□□□□□□□□□■■■■■■■■■■□■■■□■■■■ Orph France 
NLD009501731 SITVITWEB 2 ■■■■■■□■□■■■□□□□□□□□□□□□□□□□□□□□□□■■■■□■■■■ Orph Netherlands 
A1_Dassie bacillus TB-Annotator 1 ■■■■■■□■□■■■□□■■■■■□□□□□□□□□□□□□□□□■■■□□■■■  U South Africa 
A1_M. mungi https://mbovis.org, 

TB-Annotator 
1 ■■□■■■□■□■■□□□□□□□□□□□□□□□□□□□□□□□□□■■□■■■■ SB 

1960 
Botswana 

A1_chimpanzee 
bacillus 

Coscolla 2013, 
TB-Annotator 

1 ■■■□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■□■□□■ U Côte 
d’Ivoire 

*L6, L9, and both L10 samples harbor the same losses of spacer 7 and of spacer 9. DRC, Democratic Republic of the Congo; orph, orphan (single 
reported occurrence); SIT, spoligotype international type; U, undesignated. 
†Coscolla 2021, (3); Coscolla 2013, (12); SITVITWEB, (9); TB-Annotator, G. Senelle, unpub. data, 
https://www.biorxiv.org/content/10.1101/2023.06.12.526393v1. 
‡Origin unknown. 
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Conclusions
Through the extensive mining of WGS and genotyp-
ing databases, we newly identified a thus far rare M. 
tuberculosis complex lineage, L10 (proposed), pres-
ent in central Africa. The lineage is characterized by 
a new region of deletion, IS6110 insertions, and 243 
SNPs, including gyrA G7901T, recN C1920096T, and 
dnaG C2621730T. L10 represents a sister clade to L6, 
found mainly in western Africa, and L9, specifically 
in eastern Africa, and reveals a putative previously 
missing piece in the evolutionary history and migra-
tions of M. africanum. Our findings extend the known 
diversity of M. africanum in Africa. 
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Historically, the burden of Lyme disease has been 
concentrated in the Northeast and upper Mid-

western regions of the United States (1). Recent data 
suggest a southward expansion into areas of south-
western Virginia and western North Carolina (2,3). 
Although North Carolina frequently reports some of 
the highest incidence rates of spotted fever rickettsi-
osis and ehrlichiosis (4), Lyme disease transmission 
has been less intense than in neighboring states to the 
north (5). Black-legged ticks (Ixodes scapularis) have 
long been found in North Carolina, and speculation 
exists that the lower Lyme disease incidence may be 
attributable to differences in blood-meal seeking be-
haviors between the northern- and southern-origin 
ticks (6,7). Although North Carolina has seen an in-
crease in cases, many clinicians have limited experi-
ence with Lyme disease, and diagnostic errors are 
common (8,9). We describe a case of Lyme disease 
diagnosed in an otherwise healthy woman living in 
central North Carolina who had no history of travel. 

The Case
In mid-July, a generally healthy woman in her late 60s 
went biking around her neighborhood in the suburbs 

north of Raleigh, North Carolina. After the ride, she 
felt dehydrated, lightheaded, and excessively fatigued 
for the level of exertion. Four days later, she noted a 
large erythematous rash on the right side of her neck 
(Figure). She also had a fever reaching 38.6°C. Results 
of an antigen-based COVID-19 rapid test were nega-
tive. She treated her symptoms with acetaminophen.

Approximately 5 days after the rash appeared, 
she went to her primary care physician (PCP) for 
her annual physical (Table). By that time, the fever 
had resolved, but the rash was still present. Addi-
tional symptoms included a severe frontal headache 
and bilateral ear pain. Her PCP diagnosed her with 
cellulitis and prescribed a 10-day course of cepha-
lexin. After starting antibiotics, the patient felt sub-
jectively better. However, the headache returned 2 
days later. She contacted her PCP, who changed her 
antibiotic to double-strength trimethoprim/sulfa-
methoxazole out of concern that the headache was a 
side effect of cephalexin.
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Healthcare providers in North Carolina, USA, have limited 
experience diagnosing and managing Lyme disease be-
cause few cases occur annually statewide. We outline the 
prolonged diagnostic course for a patient with locally ac-
quired Lyme disease in North Carolina. This case highlights 
the need for greater awareness and professional education. 

Figure. Erythematous rash on the right side of the neck of a 
patient with Lyme disease, central North Carolina, USA.
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The headaches persisted after the antibiotic 
change, and the next day the patient visited a local 
emergency department. Results of basic laboratory 
evaluations, including a complete blood count and 
comprehensive metabolic panel, were unremarkable. 
She underwent a noncontrast computed tomography 
scan of the head, which was interpreted as without 
findings that would explain her symptoms. She was 
subsequently discharged to home.

Ten days later, the patient returned to her PCP for 
follow-up and was seen by the on-call provider. She 
still reported pain in her ears and that the pain in the 
left ear was more severe than the right. She was now 
experiencing diffuse pruritis, which was thought to 
be caused by trimethoprim/sulfamethoxazole. The 
antibiotic was discontinued because the rash ap-

peared to be resolving. However, she also noted more 
dyspnea with exertion. Additional laboratory test-
ing was ordered, including a complete blood count, 
comprehensive metabolic panel, C-reactive protein, 
and erythrocyte sedimentation rate; the erythrocyte 
sedimentation rate was slightly elevated (Table). The 
patient was prescribed erythromycin drops for otitis 
media. A referral to cardiology was placed for evalu-
ation of the exertional dyspnea.

After that visit, the patient became increasingly 
forgetful, withdrawn, and unable to perform basic 
cognitive tasks (e.g., simple calculations), which was 
noticed by her adult children. Two weeks later, ≈1 
month after the rash began, she had onset of a left-
sided facial droop. On evaluation, her PCP noted that 
she was unable to close her left eye and her smile was 
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Table. Select clinical and laboratory information for a patient with Lyme disease, central North Carolina, USA* 

Characteristic Range 
Day of illness (provider) 

Day 10 (PCP) Day 28 (PCP) Day 43 (PCP) Day 83 (ID clinic) 
Signs/symptoms      
 Fever >38.0°C  X    
 Rash  X    
 Fatigue  X    
 Headache   X   
 Itching   X   
 Left-sided ear pain   X X  
 Left sided asymmetric smile    X  
 Inability to close left eye    X  
 Cognitive impairment    X X 
 Other      
Laboratory testing      
 Complete blood count      
  Leukocytes, cells/mm3 4.0–11.0  6.1   
  Hemoglobin, mg/dL 12.9–16.0  13.3   
  Platelets,  109/L 150–400  193   
 Metabolic panel      
  Sodium, mmol/L 136–145  138   
  Potassium, mmol/L 3.5–5.5  4.0   
  Creatinine, mg/dL 0.6–1.30  0.70   
 Liver function, U/L      
  Alkaline phosphatase 38–126     
  Aspartate aminotransferase  0–39     
  Alanine aminotransferase  0–52     
 C-reactive protein, mg/L <10  10.2  <4.0 
 Sedimentation rate, mm/h 0–30   42  16 
 Tick-borne disease testing      
  Lyme EIA <0.91    Positive 
  Lyme Western blot      
  IgM 0 of 3 bands    p41, p39, p23 
  IgG 0 of 10 bands    p66, p45, p41, 

p39, p23, p18 
  SFGR IgG <1:64    <1:64 
  Ehrlichia IgG <1:64    <1:64 
  -gal IgE, kUA/L <0.35†    0.43 
  Other infectious diseases      
 HIV antigen/antibody Nonreactive    Nonreactive 
 Syphilis antibody RPR Nonreactive    Nonreactive 
Diagnosis  Cellulitis  Bell’s palsy Lyme disease 
Treatment  Cephalexin, 

bactrim 
Erythromycin Valacyclovir, 

prednisone 
Doxycycline 

*EIA, enzyme immunoassay; ID, infectious disease; PCP, primary care provider; RPR, rapid plasma reagin; SFGR, spotted fever group Rickettsia; X, present. 
†Reference range <0.1 kUA/L (kUA/L level of allergy): <0.35 absent, 0.35–0.69 low, 0.70–3.49 moderate, 3.50–17.5 high, >17.5 very high. 
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asymmetric on the same side. She was diagnosed 
with Bell’s palsy and prescribed a 1-week course of 
prednisone and valacyclovir. The facial nerve symp-
toms slowly improved and eventually resolved over 
the next week.

The next month, the patient reported more back 
pain with spasms that radiated into the cervical spine 
and neck. She underwent magnetic resonance im-
aging of the spine, which demonstrated degenera-
tive changes but no findings that would explain her 
symptoms. Her children remained concerned about 
her cognitive status, anorexia, and unintentional 
10-pound weight loss, and they requested additional 
consultations, including with a subspecialist in infec-
tious diseases.

The patient was seen in an outpatient infectious 
diseases clinic ≈2 months after the onset of symp-
toms. Although the patient did not recall any insect 
bites, her adult son recalled a small punctate lesion 
in the central part of the initial rash. Other than the 
bike rides, her only risk factor for tick or mosquito 
exposure was working in the flower garden in her 
yard. She did note that there were frequently deer on 
the property and that the family dog often slept in 
her bed. She had not traveled outside the local area 
during the previous year. Vital signs were within ref-
erence limits, and her examination was notable only 
for slow responses to questions and difficulty recall-
ing recent events. Laboratory tests for tickborne and 
other infectious diseases, including Lyme disease, 
spotted fever rickettsiosis, ehrlichiosis, and α-gal syn-
drome, were ordered. No antibiotics were prescribed 
during the visit.

Results of the Lyme disease enzyme immunoas-
say were positive. The sample was reflexed to a West-
ern blot, which showed positive results (6 of 10 IgG 
bands reactive). The patient was prescribed a 28-day 
course of oral doxycycline. Substantial improvement 
in her mood, cognitive function, and energy levels 
were noted within 3 days. She completed the course 
of doxycycline without issue. At follow-up 1 month 
later, the patient reported feeling at her recent base-
line, and her children no longer expressed concerns 
over her health. A mildly elevated α-gal result was 
discussed, but the patient was not experiencing any 
symptoms associated with the consumption of mam-
malian meat products.

Conclusions
Given the relatively mild manifestations of early 
symptoms during Lyme disease, most patients are 
seen in the outpatient setting. Therefore, primary care 
providers play an important role in the diagnosis and 

management of Lyme disease and are key targets 
for outreach. We believe the following 2 topics merit 
mention. First, in 2019, the Centers for Disease Control 
and Prevention approved the use of a modified 2-tier 
test in which the traditional Western blot is replaced 
by a second enzyme immunoassay, which is easier to 
interpret and has improved sensitivity in early dis-
ease (10–12). Some commercial laboratories in North 
Carolina have already transitioned to the modified 
2-tier test. Second, postexposure prophylaxis with a 
single 200-mg dose of doxycycline has not routinely 
been used but warrants consideration in many areas 
of the state if other criteria are met (13,14).

Although the patient did not have obvious expo-
sures to ticks, her clinical manifestations were highly 
suggestive of Lyme disease. In addition to the non-
specific constitutional symptoms, such as malaise, 
she also had a large erythema migrans rash that ap-
peared within 1 week of the likely exposure, followed 
by Bell’s palsy approximately 1 month later. During 
that period, she had visits with multiple clinicians 
and underwent a wide range of testing but never had 
specific testing or treatment for Lyme disease. Those 
delays, especially in the context of southward expan-
sion of the disease along the Appalachian Mountains, 
highlight the need for greater awareness and pro-
fessional education among healthcare providers in 
North Carolina (2,3).
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etymologia revisited
Petri Dish  
[pe′tre ′dish]

The Petri dish is named after the German inventor and bacteriolo-
gist Julius Richard Petri (1852–1921). In 1887, as an assistant to 

fellow German physician and pioneering microbiologist Robert Koch 
(1843–1910), Petri published a paper titled “A minor modification of 
the plating technique of Koch.” This seemingly modest improvement 
(a slightly larger glass lid), Petri explained, reduced contamination 
from airborne germs in comparison with Koch’s bell jar.
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The development of bedaquiline, and its inclusion 
in first-line treatment of rifampin-resistant (RR) 

and multidrug-resistant (MDR, resistance to isoniazid 
and rifampin) tuberculosis (TB), along with linezolid, 
pretomanid, and moxifloxacin, the BPaL(M) regimen, 
has transformed the management of drug-resistant 
TB (1). The World Health Organization (WHO) began 
recommending BPaL(M) in 2022. However, recent 
studies have reported the emergence of bedaquiline 
resistance, which suggests that BPaL(M) may be un-
able to prevent bedaquiline resistance at population 
level (2,3). The mechanisms underlying the selection 
and spread of bedaquiline resistance are not yet well 
understood. We describe bedaquiline resistance evo-
lution in a patient with MDR TB who had extensive 
bilateral pulmonary infiltrates despite a regimen of 6 
effective drugs.

The Study
In October 2022, a 16-year-old HIV-negative female 
patient sought care at a clinic in Windhoek, Namibia. 
She was severely underweight (BMI 16 kg/m2) and 
had radiologic findings of extensive, bilateral destruc-
tion of the lung parenchyma (Figure 1). The patient re-
ported treatment for drug-sensitive TB with a standard 
first-line regimen since December 2021 in neighboring 
Angola, but she had treatment interruptions caused 
by stockout (Figure 2, panel A). Initial molecular spu-
tum diagnostics using Xpert MTB/RIF Ultra (Cepheid, 
https://www.cepheid.com) confirmed an infection 
with Mycobacterium tuberculosis with rifampin resis-
tance. A line probe assay (Genotype MTBDRplus and 
MTBDRsl; Hain Lifescience, https://www.hain-life-
science.de) confirmed resistance to rifampin and ad-
ditional resistance to isoniazid, whereas there was no 
resistance to fluoroquinolones. Sputum-smear micros-
copy demonstrated 3+ positive acid-fast bacilli (AFB). 
Rapid molecular drug-susceptibility testing (DST) was 
performed on DNA isolated from an initial positive 
M. tuberculosis culture using targeted next-genera-
tion sequencing Deeplex Myc-TB assay (Genoscreen, 
https://www.genoscreen.fr). We identified mutations 
katG S315T, rpoB L430P, and embB M306I, which indi-
cated resistance to isoniazid, rifampin, and ethambutol 
(Figure 2, panel B). We confirmed the resistance pat-
tern by phenotypic DST in mycobacterial growth in-
dicator tube (MGIT; Becton Dickinson, https://www.
bd.com) at the supranational reference TB laboratory 
(National Institute for Communicable Diseases, Johan-
nesburg, South Africa).

In response to the patient’s extensive lung infiltra-
tion and high bacterial load, we initiated a regimen with 
6 drugs: bedaquiline, linezolid, levofloxacin, cycloser-
ine, clofazimine, and pyrazinamide (Figure 2, panel A). 
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Bedaquiline is currently a key drug for treating mul-
tidrug-resistant or rifampin-resistant tuberculosis. We 
report and discuss the unusual development of re-
sistance to bedaquiline in a teenager in Namibia, de-
spite an optimal background regimen and adherence.  
The report highlights the risk for bedaquiline resis-
tance development and the need for rapid drug- 
resistance testing.
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We ensured adherence by inpatient directly observed 
treatment. Clinical and microbiological response was 
slow; culture and smear microscopy results were nega-
tive once after 5 months of treatment (Figure 2, panel 
C). However, culture reversion occurred, and sus-
tained culture conversion was never achieved despite 
clinical and transient radiologic improvement (Figure 
1). Subsequent molecular DST based on targeted next-
generation sequencing documented several frame shift 
mutations in Rv0678 at position 779127 with 3.5% vari-
ant frequency, at 779130 with 16.0% frequency, and at 
779407 with 27.8% frequency. Mutations in rpoB, katG 
and embB remained unchanged to baseline molecular 
DST. The de novo mutations were associated with phe-
notypic resistance to bedaquiline and clofazimine. All 
other drugs tested remained susceptible in molecular 
and phenotypic DST (Figure 2, panel B). We stopped 
bedaquiline and clofazimine administration and add-
ed 3 drugs, amikacin, meropenem/amoxicillin/clavu-
lanic acid, and pretomanid, to maximize the probabil-
ity of achieving conversion and cure. Treatment was 
ongoing as of February 2024.

Conclusions
Bedaquiline has been shown to be a key drug for im-
proving outcomes in MDR/RR TB patients (4). How-
ever, recent studies have demonstrated the emer-
gence of bedaquiline resistance in patients failing 
MDR TB treatment, which, at the population level, 
points toward rapid bedaquiline resistance evolution 
and spread (3,5). Our results are particularly alarm-
ing because we demonstrated the evolution of beda-
quiline resistance despite the use of an effective back-
ground regimen and well-documented adherence to 
treatment. This result is in line with the findings of 
recently published work from Mozambique, in which 
Barilar et al. demonstrated that bedaquiline resistance 

was found not only in M. tuberculosis strains resistant 
to fluoroquinolones but also in MDR or RR M. tuber-
culosis strains susceptible to other drugs used in the 
BPaL(M) regimen (3).

Taking all evidence together, the data suggest 
that current MDR/RR TB treatment regimens are un-
able to prevent the development of bedaquiline resis-
tance in a subset of patients. A specific combination of 
pharmacokinetic and pharmacodynamic properties 
of the drug and pathogen or patient markers poten-
tially result in rapid resistance development. Detect-
ing 3 different Rv0678 variants in the patient sample 
analyzed, an observation also made for several beda-
quiline-resistant strains found previously (3,6), sup-
ports this observation.

In general, bedaquiline and clofazimine cross-re-
sistance can result from underlying pretreatment re-
sistance by infection with an already resistant strain, 
presence of heteroresistant strains and clonal popu-
lations, and de novo evolution of resistance during 
treatment (5). Here we demonstrate the rapid evo-
lution and selection of several bedaquiline resistant 
subpopulations, despite resistance-appropriate treat-
ment with 6 effective drugs. Our findings suggest a 
high bedaquiline resistance mutation rate that en-
ables parallel emergence of different bedaquiline-re-
sistant populations with different Rv0678 mutations 
in a given patient. That finding is also supported by 
large-scale sequencing data obtained from patients 
with bedaquiline resistance in Mozambique (3).

In a recent meta-analysis, Mallik et al. reported 
acquired phenotypic bedaquiline resistance in 2.2%, 
genotypic resistance in 4.4% of cases (5), whereas Pe-
rumal et al. reported phenotypic resistance in 2.1% 
of cases (7). Future studies should further investigate 
mechanisms of bedaquiline resistance development, 
for example, to identify patients at risk. Bedaqui-

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 569

Figure 1. Chest radiographs showing lungs of tuberculosis patient in Namibia who had bedaquiline resistance develop. A) At treatment 
initiation; B) at culture conversion; C) 3 months after conversion.
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line seems to have a delayed bactericidal response, 
which could be a risk factor for drug resistance de-
veloping during early treatment, particularly in ex-
tensive disease (8). Some studies suggested the use 
of highly bactericidal companion drugs in combina-
tion with bedaquiline. Van Deun et al. reviewed the 
regimen composition on the basis of the concept of 
core drugs and companion drugs (9). In accordance 
with this strategy, our patient received 2 core drugs 
(bedaquiline and levofloxacin), 1 highly bactericidal 
companion drug (linezolid) and 2 highly sterilizing 
drugs (pyrazinamide and clofazimine); we added 
cycloserine. Despite strictly following van Deun’s 
concept of effective regimen composition, resistance 

to bedaquiline/clofazimine developed in the patient 
discussed here, who had severe lung destruction and 
high bacterial load. Derendinger et al. described ac-
quired bedaquiline resistance in routine care in South 
Africa and considered use of <4 effective drugs, fluo-
roquinolone resistance, and previous or concurrent 
clofazimine use as risk factors for bedaquiline resis-
tance (6). None of those factors were present in the 
case we describe.

Shao et al. showed in their population pharmo-
cokinetic model that the current WHO recommend-
ed dosing of bedaquiline achieves a probability 
>90% of target attainment (10). However, Tanneau 
et al. proposed an exposure–response relationship 
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Figure 2. Timeline for a case 
of tuberculosis in a patient in 
Namibia whose infection became 
drug resistant after effective 
treatment. The case was originally 
diagnosed and treated beginning 
in December 2021. Interruptions in 
treatment were caused by stockout. 
Second-line drugs were not used. 
Full detailed treatment history 
is unknown. The patient sought 
care in Namibia in September 
2022; we diagnosed MDR TB in 
October 2022. Treatment failed 
and rv0678 mutation was identified 
in a culture from June 2023. A) 
Patient’s treatment history. Green 
bars represent treatment of drug-
susceptible TB; blue bars represent 
treatment of MDR TB. B) Evolution 
of phenotypic and genotypic drug 
susceptibility testing with resistance-
associated variants using Deeplex 
Myc TB (https://www.deeplex.
com). Testing was done at time 
of diagnosis of MDR TB and after 
culture reversion. Bold text indicates 
de novo mutation Months show time 
of specimen collection. C) Culture 
and smear test results. Asterisks 
indicate that tests were not done 
because of stockouts. Months 
show time of specimen collection. 
Dagger indicates start of MDR TB 
treatment. AMI, amikacin; BDQ, 
bedaquiline; CFZ, clofazimine;  
CS, cycloserine; DS, drug-
susceptible; EMB, ethambutol;  
FQ, fluoroquinolones; INH, 
isoniazid; LIN, linezolid; LFX, 
levofloxacin; MDR, multidrug-
resistant; ND, not done; PYR, 
pyrazinamide; R, resistant; RIF, 
rifampin; S, susceptible; TB, 
tuberculosis; WT, wild type.
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for bedaquiline, whereas the half-life of bacterial 
clearance was longer in pre–extensively drug-re-
sistant (XDR) and XDR TB than in MDR TB. One 
might speculate that dose adjustments to bedaqui-
line favorably influence treatment outcomes (11), as 
has been done so far in individual cases applying 
therapeutic drug monitoring (12).

In conclusion, this case demonstrates the rapid 
evolution of phenotypic and genotypic resistance 
to bedaquiline and clofazimine, despite an effective 
individualized regimen. This finding is alarming be-
cause the BPaL(M) regimen may not be completely 
effective in an unknown proportion of patients. In 
particular, cases of extensive disease might be associ-
ated with a high risk for resistance and failure in real-
world scenarios. We recommend further research into 
mechanisms of resistance, and prevention thereof, as 
well as rapid scale-up of DST capacity to identify and 
properly treat such cases as quickly as possible.
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Echinostomiasis is a disease caused by infection 
with echinostome flukes (Echinostomatidae) 

and is characterized by intestinal inflammation ac-
companied by mucosal ulceration and bleeding (1,2). 
Echinostomiasis, a typical example of a foodborne 
helminthiasis, is contracted by consuming raw or im-
properly cooked snails, bivalves, fish, or amphibians 
(1,2). This disease has been neglected mainly because 
of underestimated prevalence and worm burden 
(global prevalence and burden unknown) as well as 
underrecognized clinical and public health signifi-
cance. In South Korea and Japan, patients infected 
with the echinostome Isthmiophora hortensis reported 
gastrointestinal issues, and diagnosis was established 
after physicians extracted adult worms via gastroin-
testinal endoscopy (1).

Echinostoma mekongi was described as a new 
human-infecting echinostome that emerged in Kra-
tie and Takeo Province, Cambodia, and identified 
through morphologic and molecular analyses (3). 
The adult flukes were recovered from persons re-
siding along the Mekong River in these provinces, 
who reported abdominal discomfort, indigestion, 
and other gastrointestinal troubles (3). The meta-
cercarial stage of E. mekongi was detected in fresh-
water snails, Filopaludina martensi cambodjensis, a 
popular food item in Pursat Province (4). We found 
a highly endemic area of E. mekongi infection in 
riverside villages of Kandal Province (surround-
ing Phnom Penh, the capital; population ≈1.27 
million). Adult flukes were expelled after chemo-
therapy and purging and then analyzed morpho-
logically and molecularly (cox1 and nd1 genes). 
Freshwater snails, Pila sp., were verified to be the 
source of infection, but the first intermediate host 
and the natural definitive host other than humans  
remain unknown.

The Study
We collected fecal samples in May 2019 from 1,876 
villagers, including 1,631 schoolchildren (794 boys 
and 837 girls, 5–19 years of age) and 245 adults (89 
men and 156 women, 20–85 years of age), residing 
along the Mekong River in Kandal Province, Cam-
bodia (Figure 1, panel A). We examined samples for 
helminth eggs by using the Kato-Katz thick-smear 
technique. The overall helminth egg-positive rate 
was 16.5%. The egg-positive rate of E. mekongi was 
13.9% and markedly higher (>5 times) in schoolchil-
dren (15.5%) than in adults (2.9%) (Table 1). E. mekon-
gi eggs were operculated, oval to ovoid, yellowish, 
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A high prevalence of Echinostoma mekongi infection 
(13.9%; 260/1,876) was found among schoolchildren and 
adults in Kandal Province, Cambodia, by fecal examina-
tion, worm expulsion, and molecular analysis of cox1 and 
nd1 genes. The source of infection was consumption of 
Pila sp. snails, a finding confirmed morphologically and 
molecularly.
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thin-shelled, and 102–130 (average 116) μm long and 
62–90 (average 76) μm wide (n = 10). Other helminth 
species detected were Opisthorchis viverrini (0.9%), 
hookworms (0.7%), Enterobius vermicularis (0.7%), Hy-
menolepis nana (0.7%), Trichuris trichiura (0.3%), and 
others (Table 1).

We recruited 8 schoolchildren and 2 adult volun-
teers for the recovery of E. mekongi adult flukes (Table 
2) and administered a single oral dose of 10–15 mg/
kg praziquantel (Shin Poong Pharm. Co., https://
shinpoong.co.kr/en/main/main.php), followed by 
purging with 20–30 g magnesium sulfate. We collect-
ed whole diarrheic stools 3 to 5 times and pooled them 
individually. We fixed adult flukes in 10% formalin, 

stained the samples with acetocarmine, cleared each 
in glycerin-alcohol, and mounted the samples in glyc-
erin jelly. We kept some samples in 70%–80% ethanol 
for molecular analyses.

We recovered 48 adult and 38 juvenile specimens 
(86 in total) of E. mekongi flukes from the 10 volun-
teers (Table 2). Schoolchildren (n = 8) expelled a total 
of 64 worms (8 per child), and adults (n = 2) passed a 
total of 22 worms (11 per person) (Table 2). The adult 
flukes (Figure 1, panel B) were elongated and leaf-
like, with small head collars and small collar spines 
(37 in 2 alternating rows; 5 corner spines), globular 
or slightly lobed testes, vitelline follicles not merging 
near the posterior end, and 7.7–11.2 (average 9.5) mm 
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Figure 1. Study area and specimens of Echinostoma mekongi flukes and Pila sp. snails for study of E. mekongi infection in 
schoolchildren and adults, Kandal Province, Cambodia. A) Study area in Cambodia. B) Adult specimen of E. mekongi fluke expelled 
from a volunteer after chemotherapy and purging. Scale bar = 1.2 mm. C, D) Pila sp. snails purchased from a local market in Kandal 
Province, showing variable sizes. The presence of metacercariae in these snails was confirmed. Scale bar in panel D = 3 cm. E) 
Metacercaria of E. mekongi encysted in the tissue of a Pila sp. snail, showing its characteristic structures, including 37 collar spines 
(arrows), oral sucker, ventral sucker, and excretory granules. Scale bar = 50 m. EG, excretory granules; OS, oral sucker; OV, ovary; T, 
testis; VS, ventral sucker.

 
Table 1. Results of fecal examinations in study of Echinostoma mekongi infection among schoolchildren and adults in riverside 
villages along the Mekong River in Kandal Province, Cambodia* 

Age group 
No. 

examined 

No. (%) egg-positive cases 
Any helminth 

egg Em Ov Sm Hw Al Tt Ev Hn 
Taenia 

sp. 
Schoolchildren 1,631 290 (17.8) 253 (15.5) 11 (0.7) 1 (0.1) 8 (0.5) 2 (0.1) 5 (0.3) 10 (0.6) 10 (0.6) 1 (0.1) 
Adults 245 20 (8.2) 7 (2.9) 6 (2.4) 1 (0.4) 6 (2.4) 0 0 1 (0.4) 1 (0.4) 0 
Total 1,876 310 (16.5) 260 (13.9) 17 (0.9) 2 (0.1) 14 (0.7) 2 (0.1) 5 (0.3) 11 (0.6) 11 (0.6) 1 (0.1) 
*Em, Echinostoma mekongi; Ov, Opisthorchis viverrini; Sm, Schistosoma mekongi; Hw, hookworms; Al, Ascaris lumbricoides; Tt, Trichuris trichiura; Ev, 
Enterobius vermicularis; Hn, Hymenolepis nana. 
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by 1.8–2.3 (average 2.1) mm in size (n = 10), all char-
acteristic features of E. mekongi flukes (3).

We purchased Pila sp. snails (Figure 1, panels C 
and D) at a local market in Kandal Province and ex-
amined them for metacercariae by using the crushing 
method. We detected 10 metacercariae in 5 (7.1%) of 
70 snails examined. The metacercariae (n = 5) were 
round, 165–188 (average 176) μm in diameter (Figure 
1, panel E), and encysted with a thin, pinkish, refrac-
tile wall. The metacercariae were equipped with a  

total of 37 collar spines, oral and ventral suckers, ex-
cretory granules, and other internal organs.

We obtained mitochondrial cytochrome c oxi-
dase 1 (cox1) and NADH dehydrogenase subunit 1 
(nd1) gene sequences for molecular analyses of the 
adult flukes and metacercariae. We extracted the ge-
nomic DNA of each segment by using the DNeasy 
Blood and Tissue kit (QIAGEN, https://www.
qiagen.com/us), following the manufacturer’s in-
structions. We performed PCR amplification and  
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Table 2. Worm expulsion after praziquantel treatment and purging from volunteers positive for Echinostoma mekongi eggs in fecal 
examinations in study of Echinostoma mekongi infection in schoolchildren and adults, Kandal Province, Cambodia* 

Age group and code no. Age, y 
No. E. mekongi eggs in  
Kato-Katz fecal smears† 

No. adult E. mekongi fluke 
specimens expelled‡ 

Schoolchildren    
 1 15 168 46 
 2 15 264 6 
 3 16 96 4 
 4 16 480 2 
 5 14 168 2 
 6 13 216 2 
 7 13 168 1§ 
 8 12 48 1 
Adults    
 1 46 720 15 
 2 41 120 7§ 
*All case-patients were female. Fecal samples were collected individually 2–3 h after praziquantel administration and purging with MgSO4. 
†Eggs/g of feces; amount in a typical smear was assumed to be 41.7 mg. 
‡All recovered worms were adults that contained eggs except for 38 of 46 worms from schoolchildren case 1, which were juvenile or young adults containing 
no or only a few uterine eggs. 
§Adult specimens of Enterobius vermicularis (120 female worms in schoolchildren no. 7 and 1 female worm in adult no. 2) were collected simultaneously 

 

Figure 2. Phylogenetic trees of cox1 (A) and nd1 (B) genes of Echinostoma mekongi adults (n = 6) extracted from volunteers and 
metacercaria (n = 1) extracted from Pila sp. snails for study of E. mekongi infection in schoolchildren and adults, Kandal Province, 
Cambodia. Sequences from this study (shades boxes) are shown in comparison with other 37-collar-spined Echinostoma spp. 
(outgroup; Opisthorchis viverrini). The trees were constructed using the maximum-likelihood method, employing the Tamura-Nei model 
of nucleotide substitution with 1,000 bootstrap replications and viewed in MEGA X (https://www.megasoftware.net). GenBank accession 
numbers are given for all sequences. Scale bars indicate substitutions per site.
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sequencing by using the primers (JB3 and JB13 for 
cox1 and JB11 and JB12 for nd1) and conditions de-
scribed in a previous study (5). We constructed phy-
logenetic trees by using the maximum-likelihood 
method available in MEGA X (6) and also incorpo-
rating the Tamura-Nei model of nucleotide substitu-
tion with 1,000 bootstrap replications.

Partial sequences of cox1 (230 bp) (MW387615-
MW387621) and nd1 (453 bp) (MW390777–83) genes 
in our samples (adult flukes and metacercariae) re-
vealed strong identity with E. mekongi sequences (Fig-
ure 2, panels A and B). The phylogenetic tree of cox1 
showed that our samples (n = 7) were tightly clustered 
(99.0%–100% identical) with E. mekongi (MT449688; 
human, Kratie Province, Cambodia) but separated 
from other 37-collar-spined echinostomes, including 
E. caproni (AF025830; 92.2%), E. trivolvis (GQ463003; 
91.7%), E. miyagawai (KP455602; 90.2%–91.2%), and E. 
revolutum Southeast Asian (GU324945; 90.0%–91.0%) 
and American lineages (GQ463020; 89.8%). The phylo-
genetic tree of nd1 revealed also that our samples (n = 
7) were closely aligned (98.7%–100%) with E. mekongi 
(MT431430; human, Kratie Province, Cambodia) but 
separated from other 37-collar-spined Echinostoma 
spp., including E. paraulum (KP065680; 88.7%–89.4%), 
E. cinetorchis (KU519289; 87.4%–88.1%), E. novaezea-
landense (KY436399; 86.9%–87.6%), and E. revolutum 
American (GQ463056; 86.3%–86.5%) and Eurasian 
lineages (KC618453; 86.2%–86.4%).

Conclusions
Large trematode eggs, particularly, those of echino-
stomes, have been detected in various localities of 
Cambodia (7–11). In Pursat Province, echinostome 
eggs were found in 56 schoolchildren, and the worms 
expelled from 4 volunteers were assigned as E. revolu-
tum by morphologic analysis (7). We think, however, 
that those worms might have been E. mekongi because 
E. mekongi and E. revolutum are morphologically close 
and almost indistinguishable (3). Molecular studies 
are necessary to draw a definite conclusion on the 
species of those echinostomes. In Oddar Meanchey 
Province, the eggs of echinostomes were detected 
in 13 persons, and the adult flukes expelled were 
confirmed to be Echinostoma ilocanum flukes, having 
49–51 collar spines (8). Echinostome eggs were also 
detected in 71 persons in Kratie Province (9) and 52 
persons in Takeo Province (10), and 6 volunteers were 
confirmed to be infected with E. mekongi flukes by 
morphologic and molecular analyses (3).

A previous study of persons in Kandal Province, 
Cambodia, found a high prevalence (46.5%; 106/228) 
of large trematode eggs (suggested to be Echinostoma 

spp.) among schoolchildren (5–18 years of age), but 
no adult worm recovery nor molecular analysis was 
performed (11). By the time of our study, it was con-
firmed that E. mekongi infection is highly prevalent 
among schoolchildren and adults in Kandal Prov-
ince. The recovery of both juvenile and adult flukes 
may indicate the continuity of infection in this village. 
Freshwater snails of Pila sp. were proven to be the 
source of infection. It is speculated that E. mekongi in-
fection might be prevalent not only in other localities 
of Cambodia but also in neighboring countries (Thai-
land, Laos, and Vietnam) along the Mekong River 
and its tributaries. Avoidance of consuming raw or 
undercooked Pila sp. snails is a preventive measure 
for this emerging parasitic infection in those areas. 
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The close phylogenetic relationship between hu-
mans and great apes results in similarities in infec-

tion susceptibility and a high potential for pathogen 
exchange (1,2). Despite this zoonotic potential, previ-
ous studies of wild great apes have targeted specific 
infections (3,4), failing to establish baselines of the 
diversity of potentially zoonotic infections in these 
species. To improve our understanding of which en-
teric infections great apes are exposed to, we exam-
ined biobanked fecal samples from 2 biogeographi-
cally and phylogenetically divergent wild great ape 
species in Africa for an array of viral, parasitic, and 
bacterial enteric targets using a novel real-time PCR 
diagnostic platform. 

The Study
During December 2011–January 2012, a total of 58 fe-
cal samples from critically endangered Cross River 
gorillas (Gorilla gorilla diehli) were noninvasively col-
lected from nest sites and along trails from 2 sites in 
Cameroon, as detailed in Arandjelovic et al. (5). Sam-
pled gorillas experienced infrequent overlap with hu-
mans engaged in research or extraction of nontimber 
forest products (5). Fecal DNA extract and microsat-
ellite genotyping identified individual gorilla sample 
donors, confirming repeated sampling of 18 gorillas: 
10 from Kagwene Gorilla Sanctuary (≈50% of popula-
tion) and 8 from Mone River Forest Reserve (≈35%–
40% of population) (5). Given that serial sampling can 
increase chances that an individual tests positive for 
a target (6), only the first sample collected from each 
gorilla was screened.

During September 2016–February 2018, fecal sam-
ples were noninvasively collected from each of 56 indi-
vidually recognized endangered eastern chimpanzees 
(Pan troglodytes schweinfurthii) (≈50% of population) 
from Gombe National Park, Tanzania, as detailed in 
Wroblewski et al. (7). Sampled chimpanzees experi-
enced daily overlap with humans engaged in research 
and tourism following best practices to reduce the risk 
for pathogen exchange (2) and experienced infrequent 
overlap with humans when consuming crops at the 
boundary of the protected area (8). Fecal DNA extract 
and microsatellite genotyping were used to identify in-
dividual chimpanzee sample donors (7).

For all apes sampled, fresh fecal samples were 
preserved upon collection in Ambion RNAlater (Mil-
liporeSigma, https://www.sigmaaldrich.com) and 
stored at −20°C until shipping to the United States, 
where they were stored at −80°C until thawed for 
extraction. In December 2019, we used the TaqMan 
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Despite zoonotic potential, data are lacking on enteric in-
fection diversity in wild apes. We employed a novel mo-
lecular diagnostic platform to detect enteric infections in 
wild chimpanzees and gorillas. Prevalent Cryptosporidi-
um parvum, adenovirus, and diarrheagenic Escherichia 
coli across divergent sites and species demonstrates 
potential widespread circulation among apes in Africa.
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Array Card (ThermoFisher Scientific, https://www.
thermofisher.com), a novel real-time PCR testing 
platform, to screen ape fecal samples for 39 unique 
enteric pathogen targets (Appendix, https://ww-
wnc.cdc.gov/EID/article/30/3/23-0318-App1.pdf). 
Targets were pathogen-specific genes associated 
with either virulence or biology (i.e., specific outer 
membrane protein genes or housekeeping genes). 
As detailed in Diaz et al. (8), we extracted DNA 
and RNA from each fecal specimen using a Roche 
MagNA Pure Compact magnetic bead Total Nucleic 
Acid Kit (Roche, https://www.roche.com). For pre-
processing, we incubated sample, lysis buffer, and 
proteinase (56°C, 15 minutes) before 2 cycles on Pre-
cellys bead-beater (Bertin Technologies, https://
www.bertin-technologies.com) at 5,000 rpm for 60 
seconds. We assayed extracts using the Applied 
Biosystems ViiA7 Real-Time PCR system (Thermo-
Fisher Scientific) with the following cycling condi-
tions: 45°C for 10 minutes, 94°C for 10 minutes, 45 
cycles of 94°C for 30 seconds, and 60°C for 60 sec-
onds (8). For validation, we spiked fecal samples 
with known DNA/RNA concentrations. We evalu-
ated sensitivity with spiked dilution series and spec-
ificity through BLAST (https://blast.ncbi.nlm.nih.
gov/Blast.cgi), then isolated the panel representing  

targeted organisms. We evaluated exclusivity using 
nucleic acid from closely related species.

Analyses confirmed presence of nucleic acids of 
>1 enteric pathogen target in 15 (83%) of the 18 goril-
las and 39 (70%) of the 56 chimpanzees. We detected 
7 pathogen targets among gorillas (Table 1) and 13 
among chimpanzees (Table 2). Adenovirus and Cryp-
tosporidium parvum were the most common pathogen 
targets detected in both gorillas and chimpanzees, oc-
curring in 33% (95% CI 10%–57%) (adenovirus) and 
39% (95% CI 15%–62%) (C. parvum) of gorillas and 
52% (95% CI 39%–65%) (adenovirus) and 13% (95% 
CI 4%–21%) (C. parvum) of chimpanzees. Both adeno-
virus and C. parvum had previously been detected in 
wild great ape populations and have received atten-
tion, given their zoonotic potential (9,10).

Conclusions
Real-time PCR testing of noninvasively collected 
wild gorilla and chimpanzee fecal samples from 
Cameroon and Tanzania provided evidence of wide-
spread enteric infections and demonstrates their po-
tential circulation in ape populations in Africa be-
fore 2018. Several pathogen targets detected in the 
ape species are highly relevant to humans, including 
those commonly associated with diarrheal disease, 
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Table 1. Number of individual wild Cross River gorillas (Gorilla gorilla diehli) positive for enteric infection targets in Kagwene Gorilla 
Sanctuary and Mone River Forest Reserve, Cameroon (n = 18), 2011–2012 
Assay target Pathogen group No. positive gorillas 
Cryptosporidium parvum Parasite 7 
All adenovirus serotypes except 40 and 41 Virus 6 
Enterococcus faecalis Bacteria 5 
Enterotoxigenic Escherichia coli: E. coli carrying virulence gene for heat-labile or heat-stable 
enterotoxin 

Bacteria 1 

Enteropathogenic E. coli: E. coli carrying gene (eae) encoding outer membrane protein 
intimin and causing pathogenesis through attachment/effacement of epithelial cells 

Bacteria 1 

Escherichia coli and Shigella species carrying invasion plasmid antigen H gene Bacteria 1 
Salmonella bongori and all subspecies of Salmonella enterica Bacteria 1 

 

 
Table 2. Number of individual wild eastern chimpanzees (Pan troglodytes schweinfurthii) positive for enteric infection targets in Gombe 
National Park, Tanzania (n = 56), 2016–2018 

Assay target 
Pathogen 

group 
No. positive 

chimpanzees 
All adenovirus serotypes except 40 and 41 Virus 29 
Enterotoxigenic E. coli: E. coli carrying virulence gene for heat-labile or heat-stable enterotoxin Bacteria 5 
Enteroaggregative E. coli: Escherichia coli carrying a virulence gene (aaiC) associated with causing 
pathogenesis through aggregation in the intestinal mucosa 

Bacteria 4 

Enteropathogenic E. coli: Escherichia coli carrying gene (bfpA) encoding bundle-forming pilus and 
causing pathogenesis through attachment/effacement of epithelial cells 

Bacteria 1 

Cryptosporidium parvum Parasite 7 
All Enterovirus serotypes within Enterovirus genus Virus 5 
All Giardia species infecting humans Parasite 5 
Trichuris trichiura (Trichocephalus trichiuris) Parasite 3 
Escherichia coli and Shigella species carrying invasion plasmid antigen H gene Bacteria 2 
Aeromonas hydrophila, caviae, veronii, jandaei, salmonicida, schubertii, popofii Bacteria 1 
Enterococcus faecalis Bacteria 1 
Norovirus belonging to genogroup 2 Virus 1 
Rotavirus A species from Rotavirus genus Virus 1 
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such as diarrheagenic E. coli, adenovirus, Shigella 
spp., Giardia spp., and enterovirus. As human–non-
human primate contact increases in tropical for-
est communities, opportunities will continue to 
arise for both anthroponotic and zoonotic exchange  
and exposure (11).

Adenoviruses and Cryptosporidium species infect 
a broad range of hosts (including humans and non-
human primates), can cause mild to severe disease, 
and are also associated with high rates of illness and 
death in children and immunocompromised persons, 
especially in developing countries (12). Although the 
pathogenesis of those organisms is less understood 
in nonhuman primate populations, they are of major 
zoonotic importance, given the increasing overlap 
between humans and wild primates and high HIV/
AIDS prevalence in humans in regions inhabited by 
primate populations. Furthermore, because C. parvum 
and adenoviruses can spread through the fecal–oral 
route and persist in the environment for extended 
periods, diverse opportunities exist for direct and in-
direct transmission between humans and great apes 
(e.g., tourism and research activities, crop-raiding by 
apes, and events related to humans living in close 
proximity to parks).

Of note, many of the observed simian adenovi-
ruses show high degrees of sequence relatedness to 
human strains, suggesting evidence of past cross-spe-
cies transmission events and potential risk for such 
events in the future (10). Differentiating between 
strains was beyond the scope of this study, but the 
high detection rate of this viral target and its zoonotic 
potential warrants further characterization of this 
viral group and continued surveillance of great ape 
populations.

The first limitation of our study is that, because 
of logistical challenges and budgetary constraints, we 
were only able to focus our surveillance on 2 popula-
tions of great apes at specific points in time. In addi-
tion, sex and age classes sampled were representative 
of each ape population apart from infants, which are 
nearly impossible to sample noninvasively. 

Despite those challenges, our data provide in-
sight into the diversity of enteric infections circu-
lating in wild gorilla and chimpanzee populations 
before 2018. Detection of gene targets of zoonotic 
potential in 83% of gorillas and 70% of chimpan-
zees suggests potential health and disease transmis-
sion risks. These results are especially pertinent for 
monitoring these ape species given the previously 
documented cases of disease and epizootics (e.g., 
respiratory infections, polio, mange) in Gombe 
(13), and the lack of such in Cross River gorilla 

populations. As research, ecotourism, and forest 
encroachment in wild ape habitat increases, the risk 
for novel pathogen exposure is heightened, which 
could have catastrophic impacts on populations. 
Continued epidemiologic research among wild pri-
mate populations has the potential to predict which 
pathogens might enter both human and great ape 
populations as contact between species intensifies. 
Because pathogen exchange occurs across species 
boundaries, the potential for changes in patho-
genicity and host specificity exists, which could  
have substantial adverse effects on human and 
wildlife health (14,15). 
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Middle East respiratory syndrome coronavirus 
(MERS-CoV) is endemic in dromedary camels 

from the Arabian Peninsula and Africa; seropreva-
lence is >75% (1–3). Zoonotic transmission to humans 
has occurred sporadically, mainly on the Arabian 
Peninsula; >2,400 MERS cases and >800 deaths have 
occurred (4). Despite Kenya being a major camel-
breeding country, only 3 potentially autochthonous 
camel-exposed humans with subclinical MERS-CoV 
infections were identified in 2019 (5). The apparent 
regional epidemiologic differences might be linked to 
factors such as limited diagnostics, local risk factors 

(e.g., human comorbidities, camel herding practices, 
seasonality), or MERS-CoV strain–specific features (6).

In farmed dromedary camels, MERS-CoV out-
breaks were associated with annually synchronized 
camel parturition (7). In particular, camel calves tested 
MERS-CoV RNA–positive upon the loss of maternal 
antibodies 4–6 months after birth. Because of seasonal-
ity and changing food availability, most camels in Afri-
ca are nomadic and have variable population density. 
High population density is correlated with MERS-CoV 
seropositivity in camels in Kenya (1), but detailed in-
sights into MERS-CoV circulation are missing.

Field studies on nomadic camels are hampered 
by limited infrastructure in remote and resource-
restricted regions (8). However, nomadic camels 
are regularly transported to abattoir hubs, enabling 
sustained daily testing. We performed a continuous 
12-month study at an abattoir hub in northern Kenya 
to investigate MERS-CoV incidence in nomadic cam-
els and explore potential transmission to slaughter-
house workers.

The Study
Our sampling site was an abattoir hub in Isiolo, 
northern Kenya, where camels from Marsabit, 
Samburu, and Isiolo counties are slaughtered (Ap-
pendix Figure 1, https://wwwnc.cdc.gov/EID/
article/30/3/23-1488-App1.pdf). During September 
2022–September 2023, we took samples from 10–15 
dromedary camels 4–5 days per week (Appendix). 
The camels (n = 2,711) were originally from 12 differ-
ent administrative wards, mainly from Laisamis in 
Marsabit County (n = 1,841, 67.9%) and Burat in Isiolo 
County (n = 578, 21.3%) (Table; Appendix Figure 1).  
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Middle East respiratory syndrome coronavirus (MERS-
CoV) is endemic in dromedaries in Africa, but camel-
to-human transmission is limited. Sustained 12-month 
sampling of dromedaries in a Kenya abattoir hub showed 
biphasic MERS-CoV incidence; peak detections oc-
curred in October 2022 and February 2023. Dromedary-
exposed abattoir workers (7/48) had serologic signs of 
previous MERS-CoV exposure.
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MERS-CoV RNA was detected in 36/2,711 (1.3%) 
(Table; Figure 1) camels using quantitative reverse 
transcription PCR, which amplifies the upstream of 
the envelope E gene, and confirmed by open read-
ing frame (ORF) 1ab quantitative reverse transcrip-
tion PCR or sequencing (Appendix). The cumulative 
RNA positivity rate was higher in September–Oc-
tober 2022 at 19/381 (5.0%) compared with 17/727 
(2.3%) in January–March 2023 (Figure 1). Incidence 
was biphasic, showing detection peaks in the first 
weeks of October 2022 (7/60, 11.7%) and Febru-
ary 2023 (7/58, 12.1%) (Figure 1, panel B). For 9/36 
MERS-CoV–positive samples, we obtained ORF1ab 
sequences and performed phylogenetic analysis. The 
9 ORF1ab sequences were highly similar (>99.93% 
nucleotide identity) and had 99.75%–99.78% nucle-
otide identity with the closest MERS-CoV relative 

identified in Akaki, Ethiopia, in 2019 (9). Phyloge-
netic analysis showed that the 9 sequences clustered 
as a monophyletic group within clade C2.2, which 
encompasses East Africa strains initially detected in 
Kenya in 2018 (10) (Appendix Figure 2). Those se-
quences represent 3 putative MERS-CoV outbreaks 
occurring contemporarily in camels in Kenya (Ap-
pendix Table 1).

To test whether biphasic MERS-CoV RNA–posi-
tivity is accompanied by increased MERS-CoV IgG 
levels, we tested randomized camel serum samples 
(n = 369/2,711) by MERS-CoV S1 ELISA (Appen-
dix). MERS-CoV IgG levels showed a median optical 
density ratio (ODR) of 2.14 (95% CI 0.59–3.48) and 
a seroprevalence of 80.76% (298/369) (Appendix 
Figure 3, panel A). Lowest IgG levels were identi-
fied in June (median ODR 1.28, 95% CI 0.20–3.31),  
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Table. Overview of camel samples and MERS-CoV RNA positivity in study of MERS-CoV incidence in nomadic dromedaries with 
putative transmission to humans, Kenya, 2022–2023* 

Region 
MERS-CoV RNA–positive samples/ 

total samples (%) Town of origin 
MERS-CoV RNA–positive samples/total samples (%) 

Female camels Male camels 
Isiolo 15/859 (1.75) Burat 1/252 (0.4) 10/326 (3.1) 
  Bulla Pesa 0/2  0/0  
  Kinna 0/13  1/19 (5.3) 
  Oldo/Nyiro 0/2  2/23 (8.7) 
  Garbatulla 0/1  0/1  
  Ngare Mara 0/106  0/114  
Marsabit 26/1,846 (1.41) Laisamis 1/250 (0.4) 21/1,591 (1.3) 
  Marsabit Central 0/0  0/1  
  Sololo 0/1  0/0  
  North Horr 0/0  0/2  
  not defined 0/0  0/1  
Samburu 0/6 (0) Wamba East 0/0  0/6  
Total 36/2,711 (1.3)  2/627 (0.3) 34/2,084 (1.6) 
*MERS-CoV, Middle East respiratory syndrome coronavirus. 

 

Figure 1. Biphasic Middle East respiratory syndrome coronavirus (MERS-CoV) incidence in dromedaries sampled in an abattoir hub, 
northern Kenya, 2022–2023. A) MERS-CoV RNA detection rates in nasal swab specimens from dromedary camels tested by MERS-
CoV upE quantitative reverse transcription PCR. Continuous 12-month sampling (4–5 days per week) took place in Isiolo abattoir from 
mid-September 2022 to mid-September 2023. Sampling was suspended for 1 week in December 2022 and 1 week in July 2023. B) 
Detailed weekly overview of MERS-CoV RNA detections, peaking in October 2022 and February 2023.



Biphasic MERS-CoV Incidence in Dromedaries, Kenya

whereas the highest levels were seen in March (me-
dian ODR 2.72, 95% CI 1.67–3.76). MERS-CoV IgG 
levels were negatively associated with RNA-positiv-
ity (odds ratio [OR] 0.20, 95% CI 0.09–0.44; p<0.0001) 
(Appendix Figure 3, panel B). RNA-positivity was 
negatively associated with the season (dry vs. wet, 
OR 0.14, 95% CI 0.06–0.30; p<0.0001). Male camels 
were more likely to be RNA positive (OR 3.94, 95% 
CI 0.86–29.2; p = 0.11) and less likely to be seroposi-
tive (OR 0.27, 95% CI 0.08–0.77; p = 0.021) than were 
female camels. Older animals (>3 years of age) were 
more likely to be seropositive (86%) than were ani-
mals ≤3 years of age (72%), but this difference was 
not statistically significant.

Seroepidemiologic studies have suggested that 
abattoir workers in contact with dromedaries are at 
increased risk for MERS-CoV exposure (11). Serocon-
version of subclinical MERS cases might be missed 
when diagnostically implemented ELISA cutoffs of 
commercial kits (e.g., ODR = 1.1 for IgG positives) 
are applied (11,12). We identified MERS-CoV S1 
IgG reactivity (ODR >0.2) in 7/48 (14.6%) of Isiolo 
abattoir workers (Figure 2, panel A). We excluded 
SARS-CoV-2 infection– or vaccine–induced antibody 
cross-reactivity with MERS-CoV S1 by comparison 
of ELISA ODRs of MERS-CoV S1–based with SARS-
CoV-2 S1–based ELISA (Appendix Table 2, Figure 
4). A control cohort (n = 12) with no history of camel 
exposure showed no MERS-CoV S1 IgG reactivity 

(0/12; 0%) despite high SARS-CoV-2 S1 IgG levels 
(11/12; 92%) (Appendix Table 2).

Neutralization tests (NT) based on GFP-encod-
ing vesicular stomatitis virus pseudoparticles (VS-
Vpp) carrying the MERS-CoV S protein from clade 
A EMC/2012 or clade C2.2 (Kenya) showed that 1/7 
serum samples (1:20 dilution) had a VSVpp-NT 50% 
reduction of foci-forming units for EMC/2012 and a 
90% reduction for Kenya VSVpp-S (Figure 2, panel 
B). A MERS-CoV EMC/2012-based plaque-reduction 
neutralization test (PRNT) showed a 50% PRNT at the 
1:20 dilution, fulfilling the World Health Organization 
criteria for a confirmed MERS-CoV seroconversion. 
None of 6 selected MERS-CoV S1 ELISA-negative 
abattoir samples showed neutralizing capacity when 
tested by VSVpp-NT and PRNT (Appendix Table 2).

Conclusions
Our sustained sampling of dromedary camels 
showed a biphasic MERS-CoV incidence in northern 
Kenya not observed in previous studies (1,10,13). One 
explanation might be the short time of virus excretion 
in MERS-CoV–infected dromedaries (14), making 
viral RNA detection difficult without daily surveil-
lance. Phylogenetic analysis suggests that we identi-
fied >3 MERS-CoV clusters over 3 different weeks in 
dromedaries originating from different wards. The 
first potential factor likely influencing the outbreaks 
is increased animal-to-animal interactions, because 
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Figure 2. MERS-CoV immune 
responses in camel-exposed 
abattoir workers in Isiolo, Kenya. 
A) Results of commercial 
MERS-CoV S1-protein ELISA 
to detect IgG responses in 48 
serum samples (diluted 1:100) 
from Isiolo abattoir workers. 
Samples with ODR >0.2 were 
considered ELISA-reactive, 
suggesting that 7/48 persons had 
MERS-CoV–reactive IgGs. Of 
note, all persons tested negative 
by MERS-CoV quantitative 
reverse transcription PCR. B) 
GFP-VSVpp-MERS-CoV S 
protein-based neutralization test 
(VSVpp-NT). VSVpp-S (EMC) 
and VSVpp-S (Kenya) contained 
human codon-optimized Spikes 
from prototypic MERS-CoV EMC/2012 clade A and Kenya clade C2.2 (#L00009980). All 7 ELISA-reactive human serum samples were 
mixed with 200 foci-forming units VSVpp in final serum dilutions 1:20–1:160. Out of the 7 ELISA-reactive persons, 1 showed a VSVpp-
NT 50% foci-forming units reduction titer of 1:20 (EMC) and 1:40 (Kenya). The picture shows an example of the 1:20 dilution of an 
ELISA-reactive (#11717) and ELISA-nonreactive (#11738) abattoir worker. Negative control = ELISA-negative human serum (1:20) was 
used as reference and set to 100%. Positive control = monoclonal anti-MERS-CoV Spike receptor-binding domain binding antibody 
(mAb 7.7G6) previously shown to neutralize MERS-CoV at the tested dilution (1:2 × 105). For better graphical visibility, all pictures were 
enhanced in contrast and brightness identically. mAb, monoclonal antibody; MERS-CoV, Middle East respiratory syndrome coronavirus; 
ODR, optical density ratio; VSVpp, vesicular stomatitis virus pseudoparticles.
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camels from different herds are transported to Isiolo 
and kept in holding pens together before slaughter, 
which could enhance MERS-CoV outbreaks. Second, 
increased interactions between immunologically na-
ive and infected animals during transport and in 
holding pens increases the probability of transmit-
ting MERS-CoV. That hypothesis is supported by the 
high percentage of IgG–negative adult camels (19.24%, 
ODR<0.3) (1,7). Although identifying the exact MERS-
CoV transmission scenario between camels is logisti-
cally difficult, rapid point-of-care tests might help trace 
infections even in resource-limited conditions. 

The overall biphasic MERS-CoV incidence might 
be linked to seasonal factors, such as the biannual 
alternating wet and dry seasons in northern Kenya. 
During dry seasons, herds congregate using limited 
forage, then migrate back to the point of origin in wet 
seasons. Because calves are mainly born during the 
2 wet seasons, the loss of protection by maternal an-
tibodies coincides with the dry seasons. Of note, the 
2 dry seasons during July–October 2022 and Janu-
ary–February 2023 matched the peaks of MERS-CoV 
RNA–positivity in October 2022 and February 2023. 
The combination of immunologically naive, possibly 
infected camel calves and the dry season–specific in-
creased population density and probability of contact 
at limited waterholes might encourage MERS-CoV 
infections and transmissions among camels.

We identified 7/48 abattoir workers with puta-
tive MERS-CoV exposure or past subclinical infec-
tion by implementing ELISA ODR cutoffs previously 
shown to be suitable for seroepidemiologic studies 
outside clinical settings. In 1/7 cases, we confirmed 
MERS-CoV neutralizing antibodies by VSVpp-based 
NT and PRNT. None of the abattoir workers experi-
enced severe symptoms in recent years, supporting 
the hypothesis that clade C strains might have limited 
pathogenicity and transmissibility (15). Identifying 
defined factors that drive MERS-CoV outbreaks will 
assist in predictive epidemiology, risk assessment, 
and timely precautionary interventions for public 
and occupational health.
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The H5N1 subtype of the avian influenza virus 
A/goose/Guangdong/1/96 (Gs/GD/96) lin-

eage has caused highly pathogenic avian influenza 
(HPAI) outbreaks in poultry since 1996. In 2008, 
various novel reassortant viruses were identified 
in domestic duck and live bird markets (LBMs) in 
China bearing the genetic backbone of Gs/GD/96 
virus clade 2.3.4 hemagglutinin (HA) but differ-
ent combinations of neuraminidase, such as H5N2, 
H5N5, H5N6, and H5N8 (1). Clade 2.3.4 contin-
ued to evolve into 5th order genetic groups (clades 
2.3.4.4a–h); reassortment created different geno-
types within those clades (1). H5N8 clade 2.3.4.4 
viruses have predominantly spread across many 
countries in Asia to Europe, Africa, and North 
America (1,2); repeated outbreaks caused by H5N8 
clade 2.3.4.4b viruses were reported during 2016 to 
mid-2020 (3,4). However, H5N1 clade 2.3.4.4b virus 
emerged in late 2020, which led to an increase in wild 
bird and poultry influenza outbreaks worldwide;  

this virus strain has almost entirely replaced H5N8 
clade 2.3.4.4b globally since late 2021 (5). Moreover, 
the eastward movement of H5N1 clade 2.3.4.4b vi-
rus outbreaks from Europe to East Asia since late 
2021 suggests that wild birds likely play a role in 
virus introduction (5,6).

The Study
In April 2022, high numbers of poultry deaths were 
reported from 5 duck farms in Hulu Sungai Utara 
District, South Kalimantan Province, Indonesia  
(Appendix Figure 1, https://wwwnc.cdc.gov/EID/
article/30/3/23-0973-App1.pdf). Approximately 4,430 
of 5,770 (76.8%) ducks of different ages died; younger 
ducks manifested more severe disease. In July 2023, the 
deaths of 294 (135 adult and 159 young) of 450 ducks 
were reported in a Muscovy duck farm in Banjarbaru 
District of South Kalimantan Province. We collected 
oropharyngeal swab or tissue samples from ducks in 
Hulu Sungai Utara in 2022 and Banjarbaru in 2023 for 
necropsy and hematoxylin/eosin staining; gross and 
histologic pathology analyses were performed at the 
Disease Investigation Center Banjarbaru (Appendix). 
We also collected samples from ducks in LBMs within 
Banjar District (October 2022), which is located be-
tween the Hulu Sungai Utara and Banjarbaru districts 
where disease was reported (Appendix Figure 1). We 
sent all influenza A(H5) PCR–positive samples to the 
Disease Investigation Center Wates in Yogyakarta, 
where viruses were isolated by using the World Or-
ganisation for Animal Health protocol (7). However, 
viruses could only be isolated from 3 pooled swab 
samples from the initial cases in April 2022 in Hulu 
Sungai Utara, 1 tissue sample from the July 2023 case 
in Banjarbaru, and 1 pooled swab sample from LBMs 
in Banjar. We characterized the virus isolates antigeni-
cally by using hemagglutination inhibition assays and 
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Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b 
viruses were isolated from domestic ducks in South Ka-
limantan, Indonesia, during April 2022. The viruses were 
genetically similar to those detected in East Asia during 
2021–2022. Molecular surveillance of wild birds is need-
ed to detect potential pandemic threats from avian influ-
enza virus.
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Figure. Phylogenetic analysis of the hemagglutinin gene of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b viruses 
isolated from domestic ducks during outbreaks in South Kalimantan, Indonesia, in April 2022 and July 2023 compared with reference 
sequences. Bold font indicates the viruses isolated from duck farms in this study. Letters at right indicate subclades. Evolutionary history 
was inferred by using the maximum-likelihood method and best-fit general time reversible plus gamma distribution 4 substitution model 
involving 67 hemagglutinin H5 sequences from the GISAID database (http://www.gisaid.org); a total of 1,656 positions were in the final 
dataset. Scale bar indicates nucleotide substitutions per site.
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genetically by using whole-genome sequencing on an 
Illumina sequencing platform (https://www.illumi-
na.com) (Appendix).

We deposited whole-genome sequences of 4 vi-
rus isolates into the GISAID database (https://www.
gisaid.org) under accession nos. EPI_ISL_17371282 
(A/duck/Hulu Sungai Utara/A0522064-06/2022), 
EPI_ISL_17371283 (A/duck/Hulu Sungai Utara/
A0522064-03-04/2022), EPI_ISL_17371284 (A/duck/
Hulu Sungai Utara/A0522067-06-07/2022), and 
EPI_ISL_18438033 (A/Muscovy duck/Banjarbaru/
A0523532-9/2023). All 5 identified virus isolates were 
H5N1 clade 2.3.4.4b viruses, but the virus isolate from 
LBMs in Banjar District was not included in further 
analysis or deposited in the GISAID database because 
of incomplete gene sequences (<50% full-length se-
quence for each gene segment).

Phylogenetic analysis of the HA gene segment 
showed that all 4 analyzed viruses clustered with re-
cent HPAI H5 clade 2.3.3.4b viruses from Asia and 
Europe (Figure). However, they appeared to be more 
closely related to H5N1 clade 2.3.4.4b viruses from 
wild birds and poultry from Japan, China, and South 
Korea isolated during October 2021–February 2022. 
Phylogenetic trees for the other gene segments (poly-
merase basic 1, polymerase basic 2, polymerase acid-

ic, nucleoprotein, neuraminidase, matrix protein, 
and nonstructural segments) also indicated that all 
4 viruses were closely related to H5N1 clade 2.3.4.4b 
from Japan, China, and South Korea (Appendix Fig-
ures 2–5). The 3 viruses isolated from the influenza 
outbreak in April 2022 shared 99.8%–100% nucleo-
tide sequence similarity for each viral segment; 
however, we observed a lower nucleotide sequence 
similarity between the viruses from April 2022 and 
the virus isolated in July 2023 (Table 1), indicating 
that H5N1 clade 2.3.4.4b continued to mutate result-
ing in genetic drift. We identified all virus isolates as 
HPAI on the basis of amino acid sequences within 
the HA cleavage site (REKRRKR|G); none of those 
isolates had molecular determinants associated with 
increased binding affinity or replication efficiency 
in mammals, including humans (Appendix Table 1) 
(8,9). A BLAST search (https://www.ncbi.nlm.nih.
gov/blast) and pairwise distance analysis indicated 
all 8 gene segments from viruses isolated during the 
first outbreak in April 2022 had 98.4%–99.8% nucleic 
acid sequence identities to H5N1 clade 2.3.4.4b vi-
ruses from Japan, China, and South Korea, suggest-
ing a close common ancestor.

The gross and histologic pathology of naturally 
infected ducks showed multiorgan hemorrhages 
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Table 1. DNA sequence homologies between highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b viruses isolated from 
domestic ducks in Indonesia, 2022, and those from Banjarbaru and East Asia* 

Virus name GISAID no.† 
Collection 

date 
% Nucleic acid similarity for each gene segment 

PB2 PB1 PA HA NP NA MP NS 
Viruses from first outbreak in Hulu 
Sungai Utara  

EPI_ISL_17371282, 
EPI_ISL_17371283, 
EPI_ISL_17371284 

2022 Apr 100 100 99.8–
99.9 

99.9–
100 

100 100 100 99.8–
100 

A/Muscovy 
duck/Banjarbaru/A0523532-9/2023 

EPI_ISL_18438033 2023 Jul 7 99.4 99.3–
99.4 

99.1–
99.2 

98.9–
99.0 

99.1 98.8 99.8 98.7 

A/mandarin 
duck/Korea/WA585/2021 

EPI_ISL_6959592 2021 Oct 26 99.6 99.5–
99.6 

99.6–
99.7 

99.2–
99.3 

99.6 99.8 99.6 99.4 

A/quail/Korea/H526/2021 EPI_ISL_6959593 2021 Nov 8 99.4 99.2 99.2–
99.3 

99.0–
99.1 

99.3 99.6 99.3 99.2 

A/duck/Guangdong/S4525/2021 EPI_ISL_12572655 2021 Dec 8 99.6 99.6 99.3–
99.4 

99.2–
99.3 

99.5 99.7 99.7 99.2 

A/duck/Hubei/SE220/2022 EPI_ISL_12572659 2022 Jan 10 99.6 99.5 99.3–
99.4 

99.0–
99.2 

99.5 99.5 99.6 99.2 

A/duck/Guizhou/S1321/2022 EPI_ISL_12572656 2022 Feb 22 99.6 99.6 99.5–
99.6 

97.2–
97.3 

99.5 99.4 99.8 99.2 

A/chicken/Kagoshima/21A6T/2021 EPI_ISL_6829533 2021 Nov 12 99.6 99.6 99.6–
99.7 

99.1–
99.2 

99.6 99.7 99.8 99.4 

A/chicken/Saitama/TU7-
34,36/2021 

EPI_ISL_15063425 2021 Dec 7 99.6 99.3–
99.4 

99.1–
99.2 

98.4–
98.6 

99.1 99.6 99.3 99.0 

A/chicken/Ehime/TU11-2-24 
25/2022 

EPI_ISL_15063431 2022 Jan 4 99.8 92.0 99.5–
99.6 

99.2–
99.3 

99.3 99.6 99.7 99.3 

A/common 
buzzard/Japan/2601B013/2022  

EPI_ISL_16831015 2022 Jan 27 99.6 99.2–
99.3 

99.3–
99.4 

98.6–
98.7 

99.3 99.6 99.3 99.2 

A/teal/Miyazaki/211109-32/2021 EPI_ISL_15613494 2021 Nov 9 99.4 99.2–
99.3 

99.3 98.7–
98.8 

99.1 99.6 99.2 99.2 

*H5N1 clade 2.3.4.4b viruses isolated from the initial poultry outbreak in Hulu Sungai Utara in April 2022 were compared with those isolated later from 
Banjarbaru, Indonesia, in July 2023 and H5N1 clade 2.3.4.b viruses from East Asia isolated during October 2021–February 2022. HA, hemagglutinin; MP, 
matrix protein; NA, neuraminidase; NP, nucleoprotein; NS, nonstructural; PA, polymerase acidic; PB1, polymerase basic 1; PB2, polymerase basic 2. 
†GISAID database (https://www.gisaid.org). 
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with prominent lesions in tissues and congestion 
and focal necrosis in parenchymal cells, often ac-
companied by inflammatory cell infiltrates (Ap-
pendix, Figure 6). Hemagglutination inhibition as-
says revealed the virus isolates from April 2022 had  
low reactivity with H5N1 antiserum derived from cir-
culating viruses, including the H5N1 vaccine strains 
used for poultry (Table 2). Those results suggest that 
new vaccine candidates antigenically matched to 
circulating viruses might be needed in Indonesia, if 
H5N1 clade 2.3.4.4b viruses continue to infect poultry.

Wild migratory birds might play a role in the in-
tercontinental spread of HPAI H5Nx clade 2.3.4.4 vi-
ruses (1,10,11). Indonesia is situated within the East 
Asian Flyway’s island or oceanic routes linking east-
ern Russia and Japan to the Philippines and eastern 
Indonesia (12). One stopover site is on the west coast 
of South Kalimantan, where 23 migratory bird spe-
cies have been identified and observed (13). Migra-
tory birds often use stopover sites for 1 day to several 
weeks to rest and refuel (12), providing opportunities 
for virus transmission through direct or indirect con-
tacts with local wild birds or aquatic poultry within 
their shared habitats.

During April 2022–July 2023, we conducted mo-
lecular surveillance through a network for influenza 
virus monitoring in Indonesia (14) and did not detect 
other H5N1 clade 2.3.4.4b outbreaks outside of South 
Kalimantan. Similar to an earlier virus incursion of 
H5N1 clade 2.3.2.1c in Java in 2012, which initially 
also affected ducks (15), we could not determine the 
exact origin of virus incursion. However, genetic 
evidence and bird migration patterns suggest that  

migratory birds contributed to the introduction of 
H5N1 clade 2.3.4.4b into Indonesia.

Conclusion
We identified HPAI H5N1 clade 2.3.4.4b viruses 
in ducks in South Kalimantan, Indonesia. The role 
of migratory birds in virus introduction cannot be 
ruled out because South Kalimantan is situated 
within the East Asia Flyway corridor, and the in-
fected farms were connected to marshes that pro-
vided opportunity for direct or indirect contacts 
with migratory birds. Limited wild bird surveil-
lance and genome sequence data for avian influen-
za viruses impeded our ability to determine further 
transmission and spread of H5N1 clade 2.3.4.4b in 
Indonesia. Both epidemiologic studies and molecu-
lar surveillance of wild birds are needed to better 
prepare for pandemic threats caused by contin-
ued avian influenza virus evolution in Indonesia  
and elsewhere.
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Table 2. Hemagglutinin inhibition assay titers using 2-fold serial dilutions of virus-specific antiserum in study of highly pathogenic avian 
influenza A(H5N1) virus clade 2.3.4.4b in domestic ducks, Indonesia, 2022* 

Antiserum source, clade, GISAID no.† 

Antigen source 
A/duck/Hulu Sungai 

Utara/A0522064-
06/2022 

A/duck/Hulu Sungai 
Utara/A0522064-

03-04/2022 

A/duck/Hulu Sungai 
Utara/A0522067-

06-07/2022 

A/muscovy duck/ 
Banjarbaru/A05235

32-9/2023 
A/chicken/West Java/PWT-WIJ/2006, H5N1 
clade 2.1.3.2, EPI_ISL_12700530‡ 

<4 <4 <4 16 

A/chicken/Barru/BBVM 41-13/2013, H5N1 
clade 2.1.3.2a, EPI_ISL_17767706 

16 16 16 16 

A /duck/Sukoharjo/BBVW-1428-9/2012, H5N1 
clade 2.3.2.1c, EPI_ISL_266808§ 

16 32 32 32 

A/chicken/Tanggamus/031711076-65/2017, 
H5N1 clade 2.3.2.1c, EPI_ISL_17767763¶ 

16 32 16 32 

A/duck/Laos/XBY004/2014, H5N6 clade 
2.3.4.4b, EPI_ISL_168385 

8 16 8 16 

A/duck/Hulu Sungai Utara/A0522064-03-
04/2022, H5N1 clade 2.3.4.4b# 

512 512 128 128 
*Viruses were isolated by using the World Organisation for Animal Health protocol (7). The 3 viruses isolated from Hulu Sungai Utara in April 2022 and 
the virus isolated from Banjarbaru in July 2023 were used as antigen sources. 
†GISAID (https://www.gisaid.org). 
‡H5N1 clade 2.1.3.2 vaccine-seed strain used in Indonesia since 2009. 
§H5N1 clade 2.3.2.1c vaccine strain used during 2012–2020. 
¶H5N1 clade 2.3.2.1c vaccine strain used since 2021. 
#Homologous antiserum for H5N1 clade 2.3.4.4b viruses isolated from the initial outbreak in Hulu Sungai Utara, April 2022. 
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Thelazia callipaeda eyeworm was considered an ex-
otic parasite in North America until an autochtho-

nous case was reported in a dog from New York, USA, 
in 2020 (1). T. callipaeda eyeworm has been reported 
in countries in East Asia and the Soviet Union, later 
expanding its geographic range into Europe (2,3). This 
zoonotic parasite primarily infects the orbital cavity 
of its host causing thelaziosis (3). The zoophilic se-
cretophagous male fly, Phortica variegata, is a T. calli-
paeda vector; flies ingest first-stage T. callipaeda larvae 
from the lacrimal secretions of an infected host and 
redeposit them as infective third-stage larvae, which 
eventually complete their life cycle by developing into 
adult worms (4). P. variegata flies have been found 
in Orange and Monroe Counties in New York (5,6), 
which has likely promoted the emergence of T. calli-
paeda eyeworm in North America (4). Since the T. calli-
paeda infection in a dog reported in New York in 2020, 
a total of 11 canine cases (6 in New York, 3 in New 
Jersey, 1 each in Connecticut and Nevada) and 2 feline 
cases (both from New York) (Figure 1) have been con-
firmed morphologically at the Cornell Animal Health  

Diagnostic Center (AHDC) in Ithaca, New York, USA. 
We describe 2 feline thelaziosis cases and discuss new 
canine cases in northeastern United States (New York/
New Jersey border) during February 2021–December 
2022 and One Health approaches to limit spread of 
this emerging disease in the United States.

The Study
Case 1 was in a 16-year-old neutered male, domestic 
shorthair cat from Greenwood Lake, Orange County, 
New York, that had been regularly cared for at the 
Warwick Valley Veterinary Hospital in New York, 
since October 2019. The animal had a recurrent his-
tory of flea infestation, which was managed with 
selamectin. The cat received routine rabies vaccina-
tions at the clinic and was regularly dewormed with a 
combination of emodepside (3 mg/kg) and praziqu-
antel (12 mg/kg) applied topically to the skin by the 
owner. Since June 2021, the animal has been treated 
for progressive chronic kidney disease. During a visit 
in April 2022, the cat had crusty lesions on its swollen 
right eye. Initial treatment with an ophthalmic oint-
ment containing tobramycin resolved the eye infec-
tion. In August 2022, the cat manifested squinting, 
epiphora, and mucus accumulation in the right eye, 
which did not improve after tobramycin treatment. 
Detailed examination of the right eye revealed a con-
stricted pupil and an elevated nictitating membrane 
with 4 thread-like worms, which were recovered 
mechanically at the clinic by flushing with saline so-
lution. Of the 4 worms collected, 1 intact worm was 
received at AHDC for identification. The cat did not 
travel outside of New York. The animal was pre-
scribed an ophthalmic ointment containing neomy-
cin and polymyxin B and a dewormer (combination 
of emodepside [3 mg/kg] and praziquantel [12 mg/
kg]) applied topically to the skin. No relapse was ob-
served after treatment.
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We report 2 autochthonous feline thelaziosis cases 
caused by the eyeworm Thelazia callipaeda and dis-
cuss the spread among dogs in the northeastern United 
States. Phylogenetic analysis suggests the parasite was 
introduced from Europe. Adopting a One Health ap-
proach is needed to limit further spread of T. callipaeda 
eyeworms in North America. 
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Case 2 was in a 2.5-year-old spayed female, do-
mestic shorthair cat from a multicat household in 
Clinton Corners, Dutchess County, New York (ad-
opted in Columbia County, New York). The cat did 
not travel outside of New York and was examined 
in October 2022 at a pet hospital during a routine 
rabies vaccination appointment. Ophthalmic exami-
nation revealed multiple white thread-like worms 
on the bulbar conjunctiva of both eyes (Figure 2). 
The cat had no clinical signs and was prescribed a 
dewormer (combination of emodepside [3 mg/kg] 
and praziquantel [12 mg/kg]) applied topically to 
the skin. Follow-up after 2 weeks revealed the pres-
ence of 8 worms, which were manually removed un-
der local anesthesia. Two intact worms were sent to 
AHDC for identification. The cat was prescribed a 
combination of imidacloprid (10 mg/kg) and mox-
idectin (1 mg/kg) applied topically to the skin. Com-
plete recovery was noted during a follow-up visit in 
November 2022.

At AHDC, we identified 1 male worm from case 
1 and 2 female worms from case 2 morphologically as 
T. callipaeda eyeworm, primarily on the basis of trans-
verse cuticular striations. The female worms were 11 
and 14 mm long, and the male worm was 8.1 mm 

long; all 3 had a wide, moderately deep buccal cavity. 
The number of transverse cuticular striations at the 
cephalic, midbody, and caudal regions ranged 150–
400/mm/region in both male and female worms. 
In the male worm, the long spicule was ≈2 mm long 
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Figure 1. Locations of thelaziosis cases caused by Thelazia callipaeda eyeworm in dogs (circles) and cats (squares), New York, 
New Jersey, and Connecticut, USA. Star indicates the dog case reported in New York in 2020. Inset map indicates the area where T. 
callipaeda infections were reported (box). The dog case reported from Nevada was not included in the map because the travel history 
for that animal was unknown. 

Figure 2. Adult parasites (red arrow) in the bulbar conjunctiva of 
the left eye of a cat in study of emergence of thelaziosis caused 
by Thelazia callipaeda in dogs and cats, United States. The cat 
was 2.5-year-old spayed female domestic shorthair cat (case 2) 
examined in October 2022.



Thelaziosis in Dogs and Cats, United States

and the short spicule was 0.1 mm long. The vulval 
opening in the female worms was anterior to the 
esophageal/intestinal junction (Appendix Figure 1,  
https://wwwnc.cdc.gov/EID/article/30/3/23-
0700-App1.pdf). 

We performed PCR on 1 female worm sample 
from feline case 2 and 1 sample from a dog case tar-
geting 12S rRNA, 18S rRNA, and cytochrome oxi-
dase c subunit 1 (cox1) using previously described 
protocols (7–9). The amplified PCR products for both 
worm samples were 421 bp for 12S rRNA, 891 bp for 
18S rRNA, and 612 bp for cox1. We Sanger sequenced 
the PCR products, edited and aligned the sequences 
by using BioEdit (https://bioedit.software.informer.
com), and compared them with available GenBank 
sequences by using BLAST analysis (https://blast.
ncbi.nlm.nih.gov). We observed 100% sequence iden-
tity with corresponding genes available for T. callipae-
da in GenBank. We deposited the sequences from this 
study in GenBank under accession nos. OR545549, 
OR545261, and OR982681. Phylogenetic analysis of 
the cox1 sequences revealed clustering as a monophy-
letic clade with T. callipaeda haplotype 1 from Europe 
(10,11) (Appendix Figure 2). This study and the previ-
ous report on a dog (1) reconfirm the possibility that 
this parasite was introduced from Europe and subse-
quently spread in the United States.

Conclusions
The presence of T. callipaeda eyeworm in 2 cats and 
11 dogs with no travel history outside of the United 
States suggests that this parasite is emerging in North 
America. Indeed, a previous study documented the 
presence of P. variegata flies in 2 counties in New York 
and indicated this fly species is a competent vector for 
T. callipaeda eyeworm, further suggesting an emerg-
ing threat by this eyeworm in the northeastern region 
of the United States (6). In addition, a wide variety 
of wildlife in New York, including coyotes, red foxes, 
gray foxes, black bears, raccoons, minks, least wea-
sels, striped skunks, cottontail rabbits, and snowshoe 
hares, might act as potential hosts for T. callipaeda eye-
worm (6); no human cases have been reported from 
this geographic area. A canine thelaziosis case was 
also found in the western United States (Nevada), 
although the travel history is unknown for that dog. 
Adopting proper diagnosis and surveillance mea-
sures is critical to limit the spread of this zoonotic 
parasite. Studies on control and treatment approach-
es for dogs suggest mechanical removal of adult 
and larval T. callipaeda nematodes coupled with the 
administration of diverse deworming drugs is effec-
tive (12). Because vector control using fly repellents  

is ineffective (3), control of T. callipaeda infections 
mainly rely on diagnosis and timely anthelmintic 
treatment. The presence of the natural vector, P. var-
iegata flies (4,6), and the potential involvement of the 
sylvatic cycle promote the spread of this exotic para-
site. Most cases in this study were diagnosed in late 
summer and autumn, which correlates with peak fly 
activity. Therefore, prophylactic anthelmintic admin-
istration coinciding with fly seasons would be an ef-
fective control strategy. Furthermore, as indicated 
in previous reports (1,4), adoption of a holistic One 
Health approach will be effective in further limiting 
the spread of T. callipaeda eyeworm in North America.
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The recent release of The Last of Us, a television 
drama series created for HBO consisting of 9 ep-

isodes in its first season (and renewed for a second 
season), has shed light on the global significance of 
fungal infections and spurred discussions on their po-
tential to cause a pandemic. The series has met with 
wide acclaim, even prompting the Centers for Disease 
Control and Prevention to officially clarify the plau-
sibility of the show’s premise in a tweet. Created by 
Craig Mazin and Neil Druckmann, The Last of Us is 
based on a successful video game developed in 2013 
by the company Naughty Dog. Both the game and the 
television series take place in a postpandemic world, 
in which most humans have been either transformed 
into zombies by a human-adapted, mind-controlling 
fungal species of Cordyceps or killed by zombies, 
rogue humans, or the totalitarian state. Twenty years 
after the outbreak, a young girl who is immune to in-
fection crosses the United States, accompanied by her 
protector, to reach scientists hoping to create a cure or 
a vaccine by studying her.

Is Such a Scenario, of a Fungal Pandemic,  
Plausible?
Up to 5.1 million fungal species are estimated to ex-
ist in nature (1). About 148,000 types have been char-
acterized, a few hundred of which are pathogenic 
for humans (2). A recent fungal priority pathogens 
list developed by the World Health Organization  

attributes 1.6 million annual deaths to fungal infec-
tions (3); considerable illness can also be attributed 
to fungal infections. In recent years, a rising percent-
age of emerging infectious diseases has been fungal 
in nature, including multidrug-resistant species with 
considerable mortality such as Candida auris (4) and 
rapidly disseminating ones such as Trichophyton in-
dotineae (5). In a planetary health approach, the sig-
nificance of fungal infections is even broader. Eighty 
percent of plant diseases are attributed to fungi, in-
cluding pathogens that bring about substantial spe-
cies or crop destruction worldwide. Cryphonectria 
parasitica eliminated almost 4 billion sweet chestnut 
trees in the eastern United States after its geographic 
introduction (6), Magnaporthe oryzae has destroyed 
rice crops (7), and Puccinia graminis has emerged as 
a major risk for grains (8). Panzootics can be caused 
by fungi, even threatening to evolve into extinction-
level events; a recent example is the emergence of 
chytrid fungi that have menaced numerous amphib-
ian species (9).

In humans, the importance of fungal infections has 
been increasing because of the increase in susceptible 
populations, in particular immunocompromised 
persons of varying immunologic deficits, ranging 
from transplant patients to persons with diabetes 
mellitus (which is known to predispose persons to 
severe mucormycosis) (10). Progress in antifungal 
therapeutic interventions has been slow, partly 
because of the fungi eukaryotic nature, which can 
lead to substantial adverse events. At present, only 4 
classes of antifungals are available (azoles, polyenes, 
pyrimidines, and echinocandins), although research 
toward new antifungal development is promising 
(11). Certain species express a multidrug-resistant 
profile, though, including C. auris and T. indotineae.

Selective pressures might account for 
emergence of novel fungal pathogens, as in the case 
of C. auris, the concurrent worldwide appearance of 
which might be a consequence of global warming, 
enabling fungal species to adapt to higher 
temperatures and subsequently to human body 
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The television series The Last of Us imagines a 
postapocalyptic world ravaged by a fungal pandemic 
caused by a Cordyceps species. We evaluate whether 
a fungal pandemic is possible (and reasons behind its 
current improbability). We further discuss the series’ 
effect on public perception of fungi, fungal infections, and 
pandemic response.
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temperature, a major obstacle to the development 
of nonsuperficial fungal infections in humans (2,12). 
Human practices also induce fungal reemergence, 
as with the appearance of resistant Aspergillus 
species because of the extensive, uncontrolled use 
of fungicides in agriculture (13).

Fortunately, fungi are relatively slow mutators. 
The process of species-jumping and host adaptation, 
such as in the case of Ophiocordyceps unilateralis (the 
prototype for the pathogen in The Last of Us), which 
adapted from beetle-infecting species to ant fungal 
pathogen (14), is time consuming and would not be 
expected to occur over just a few years.

Cordyceps species are ubiquitous: >100 have 
been described, they are species-specific, and >35 
of them perform “mind control” in their hosts. 
The Cordyceps name is derived both from Ancient 
Greek and Latin: κορδύλη means truncheon and 
ceps means head. O. unilateralis, upon infecting an 
ant, modifies the host’s behavior, leading the ant to 
move to a specific tree-branch height before it dies; 
the fungus then destroys the host body and sheds 
fungal spores (from an ideal height) for further 
fungal dissemination in the environment.

No vertebrate Cordyceps hosts exist, and an 
evolutionary path leading there would probably 
require tens of thousands of years. Other brain-
modifying or brain-occupying pathogens do exist, 
however, such as rabies virus, perhaps the most 
typical. Human behavior can be modified by 
pathogens to enable their spread in simpler ways: 
common cold viruses induce coughing and sneezing, 
essentially enhancing their own transmission, 
and similarly, gastrointestinal pathogens change 
human bowel habits and enable them to spread 
through diarrhea (15). Further focusing on neural 
involvement, primary amoebic meningoencephalitis, 
caused by Naegleria fowleri, might be a more accurate 
example of a brain-eating pathogen. Bornavirus has 
in the past been considered a cause of psychiatric 
disorders (an outcome of brain modification), and 
the role of toxoplasmosis in the future development 
of schizophrenia has also been evaluated. 
Numerous other pathogens can manifest through 
chronic central nervous system involvement and 
neuropsychiatric symptomatology, including the 
fungi Cryptococcus neoformans.

The extraordinary success of The Last of Us has 
implications, because all depictions of epidemics 
and infection in film and television can affect public 
perceptions of infectious diseases and outbreaks 
(16,17). The video game itself was partly successful 
because it described a critical dystopia (18) but one 

that included utopian foci that signify hope and 
resistance (in contrast to classical dystopias) and 
act as a pathway to catharsis, an escape from the 
doom, for the player and, subsequently, the viewer. 
In addition, the game was scripted with valid 
scientific details and an openness to moral issues 
(19): the enemies were not only the infected persons 
who had become zombies. The Federal Disaster 
Response Agency was also an enemy, because it 
represented a totalitarian force that had little to do 
with public health and protection (admittedly, this 
is a television show betting on horror and serves as 
a worst-case scenario and pessimistic study in social 
psychology). But surviving humans also, at times, 
became enemies out of desperation or vile evolution 
(e.g., the Raiders, survivor gangs attacking other 
uninfected humans for food and supplies). Even the 
Fireflies, the citizen group fighting the totalitarian 
state, could be considered an enemy because their 
mission includes killing the immune child to use her 
brain to prepare a vaccine. As Erik English recently 
stated (20), sacrificing a child for the greater societal 
good represents a broken social contract.

The series is ambitious in its scientific statements to 
the extent that they align with a compelling narrative. 
Thus, whereas major scientific issues such as global 
warming, pandemics, and accelerated mutation and 
adaptation of pathogens are discussed (things that 
many viewers with a casual understanding of science 
will recognize as potential threats even if they do not 
understand the pathology of fungi), certain details 
might succumb to the needs of the narrative. The 
series begins with a televised expert panel discussion 
in the late 1960s; an expert explains that although 
humanity has been at constant war with epidemic- 
and pandemic-causing viruses and bacteria, that war 
is, eventually, always won, despite casualties and lost 
battles. However, the same would not be certain if a 
fungal enemy emerged because of climate change, the 
expert warns.

Fast forward to the opening of the second episode, 
which narrates the initial outbreak in Indonesia, 
describing how the epidemic started in a grain/flour 
factory, initially infecting persons in contact with 
infected products but then rapidly disseminating 
through person-to-person transmission worldwide. 
This point is where the need of the show runners to 
impress the viewer diverts from scientific reasoning: 
apart from the improbably fast dissemination of the 
nonairborne pathogen worldwide, the series presents 
an expert Indonesian mycologist who states, when 
asked what should be done about the outbreak, “Bomb 
Jakarta,” an awe-inducing statement. Bombing was 
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implied as a means of outbreak containment in the 
1995 film Outbreak, considered to be one of the most 
accurate on-screen depictions of an outbreak (16), 
but in that scenario, at least, the army proposed it, 
whereas here it is a scientist’s proposal. One could 
argue that if Jakarta were bombed in this hypothetical 
scenario, humanity could have been spared from the 
apocalypse. However, this statement immediately 
renders the scientific community useless, possibly 
indirectly weakening the public’s trust in science 
itself (or reflecting public worries about the ability 
of science to respond adequately). Similarly, the 
fact that the human response to the pandemic 
eventually led to a totalitarian state (complete with 
quarantine zones and death penalties) might reflect 
the audience’s actual fears, particularly in the 
context of an actual pandemic, in which necessary 
initial lifesaving measures (e.g., lockdowns) have 
been vilified by merchants of disinformation. (One 
could counter-argue that certain approaches to viral 
containment in China were, or have been presented 
in the world media as, dystopic). The choice of Jakarta 
as the origin of the pandemic might feed inaccurate 
stereotypes that link emerging infectious diseases 
specifically with the developing world, but southeast 
Asia has no relevant outbreak history of emerging 
fungal infections and would not be considered 
a fungal hot spot. Jakarta could be considered a 
megacity, however, and as such could contain areas 
with hygienic challenges that could favor early 
infection dissemination.

The Last of Us is not the first work of art depicting 
a postapocalyptic world caused by a Cordyceps species 
adapted to humans. The 2016 film The Girl With All 
The Gifts, based on the Mike Carey book of the same 
title, imagines a world where the pathogen achieves 
equilibrium with its hosts, resulting in a society that 
breeds intelligent zombie children (“They had to live 
with the pathogen, endemicity was unavoidable” 
echoes the excuses used for our actual pandemic 
response fatigue). The initial depiction of a human-
infecting Cordyceps outbreak, though, was in 2011, in 
the Fox television series Fringe, in an episode titled 
Alone in the World. In that episode, a variant of 
the fungus with the capacity for hyper-accelerated 
growth and nutrition absorption formed an extended 
neural network and was eventually contained with 
a specifically developed toxin (after initial partially 
successful ultraviolet light attempts).

Eventually, is a fungal pandemic a plausible 
scenario? Fungi are not included in the World Health 
Organization prioritization criteria for potential 
biologic weapon development and use, and other 

prioritization scores for biologic weapons (21) would 
yield a low score for fungi. There is no history of 
rogue research on fungal weaponization; in addition, 
a narrow spectrum of the population would be 
vulnerable to such a pathogen, and person-to-person 
transmission would be limited (we do inhale fungal 
spores, but we do not exhale them). On the other 
hand, a fungal pandemic would find humanity 
ill-prepared. Our diagnostic capacity for fungal 
pathogens remains extremely limited, no vaccines 
are available (although preliminary research has been 
conducted on a Coccidioides vaccine, and a Candida 
vaccine has been tested in a phase 2 clinical trial of 
vulvovaginal candidiasis) (22,23), and our therapeutic 
interventions are limited, costly, and have major 
side effects. Yet there would be space for preventive 
use of interventions: would rapid dissemination of 
antifungal medication be feasible in such a case? And 
how rapidly would antifungal resistance emerge?

In conclusion, The Last of Us might resonate with 
audiences because of our current experience with a 
pandemic unprecedented for the modern scientific 
world, in addition to the creators’ narrative abilities 
and the minor infusions of scientific accuracy. 
Does The Last of Us leave viewers with a perhaps 
dangerous and misconstrued perception about how 
the preparedness of the scientific and public health 
community to deal with pathogens and pandemics 
could lead society into an Orwellian dystopia? One 
could wish for future depictions of zombie apocalypses 
that are more optimistic regarding human behavior. 
An example of more positive messaging depicting 
such an event was the Center for Disease Control 
and Prevention Zombie Apocalypse preparedness 
exercise (now retired), which created a much more 
optimistic scenario while educating persons on how 
to be ready for an emergency. The Last of Us is not 
upon us, neither biologically nor psychologically; 
humankind’s response in reality might, we believe, 
be far kinder than what is portrayed here.
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Burkholderia pseudomallei is a saprophytic gram-
negative bacillus that resides in the soil and 

surface water of many tropical and subtropical  
environments (1). This bacterium causes the poten-
tially life-threatening infection melioidosis, a major 
cause of death in endemic areas (1).

In 2019, a 56-year-old woman from Maryland, 
USA, was hospitalized with melioidosis despite hav-
ing no travel history to a B. pseudomallei–endemic re-
gion. She was infected with a B. pseudomallei isolate 
found within a recently purchased ornamental fish 
tank (2). Whole-genome sequencing demonstrated 
genome clustering associated with Southeast Asia. An 
earlier study had also detected B. pseudomallei bacteria 
in water used to import tropical fish from Singapore 
to France (3). A large overlap exists between B. pseudo-
mallei bacteria endemicity and sources of ornamental 
fish exportation, and Southeast Asia accounts for 57% 
of global trade (4). 

We sampled retail and residential fish tanks in 
Vientiane Capital, Laos, where B. pseudomallei bacteria 
has been shown to be widespread (5,6). We defined 
a fish tank as a container (glass, plastic, or ceramic) 
with water containing ornamental fish. Samples 
were collected during the Laos rainy season (June–
July), when melioidosis incidence is highest (7). Each 
site completed a questionnaire detailing tank water 
sources and maintenance procedures.

Sampling methods mirrored those used by the 
investigational team from the Maryland case (2), 
alongside established methods for environmen-
tal sampling of B. pseudomallei bacteria in Laos (6). 
From each tank, we took a 1-L water sample, 10 g 
of sediment, and 2 swab samples (Medical Wire & 
Equipment, https://www.mwe.co.uk) of biofilm. 
We vacuumed 500-mL water samples that had been 
filtered in succession through 5 µm– and 0.2 µm–
pore-sized cellulose acetate filters (Sartorius Stedim 
Biotech, https://www.sartorius.com) to capture 
suspended particulates and planktonic bacteria. We 
placed the water filters, the sediment, and swab tips 
directly in B. pseudomallei–selective broth containing 
colistin (50 mg/mL) and incubated them aerobically 
at 37°C for 48 hours and 168 hours before culture 
and molecular detection. We then subcultured 10 
µL of enriched sample on Ashdown agar contain-
ing gentamicin (8 mg/L). We tested any colony 
with an appearance consistent with B. pseudomallei 
bacteria by using both B. pseudomallei–specific latex 
agglutination (Mahidol University Faculty of Tropi-
cal Medicine, https://www.tm.mahidol.ac.th) and 
Vitek MS matrix-assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry (bioMérieux, 
https://www.biomerieux.com). We conducted 
molecular detection by using real-time quantitative 
PCR (qPCR) after 7 days of enrichment in B. pseu-
domallei–selective broth. We performed DNA extrac-
tion by using a GeneJET Genomic DNA Purification 
Kit (ThermoFisher Scientific, https://www.thermo-
fisher.com). The qPCR targeted the B. pseudomallei 
type 3 secretion system using a protocol based on 
a previously published methodology (8). To con-
trol for the presence of inhibitors, we used a paral-
lel Orientia tsutsugamushi bacteria inhibition control 
PCR to check delay in amplification of a 47-kDa O. 
tsutsugamushi gene plasmid in the presence of each 
sample. We processed 2 positive controls using tank 
water samples we inoculated with 3 and 30 CFU/
mL using the same methods. We isolated B. pseudo-
mallei bacteria on culture and detected it by qPCR in 
both cases.

We sampled a total 111 tanks from 14 sites, in-
cluding 82 tanks from 6 fish retailers and 29 tanks 
from 8 residents. Eleven (9.9%) tanks were kept 
outside, 39 (35.1%) were kept outside under cover, 
and 60 (54.1%) were kept inside. All sites used tap 
water as the primary water source without the ad-
dition of disinfectants, except 1 that used rainwa-
ter. We detected B. pseudomallei bacteria by qPCR 
only within a single covered outdoor retailer tank 
water sample, a finding we confirmed on repeat 
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In 2019, a melioidosis case in Maryland, USA, was 
shown to have been acquired from an ornamental fish 
tank contaminated with Burkholderia pseudomallei bac-
teria, likely derived from Southeast Asia. We investigat-
ed the presence of B. pseudomallei in ornamental fish 
tanks in the endemic area of Vientiane, Laos.

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024 599



qPCR testing (cycle threshold value 34.9). The ab-
sence of positive culture and the high qPCR cycle 
threshold value suggested that a low concentration 
of B. pseudomallei bacteria was present in the sam-
ple (<1 CFU/500 mL).

Our study has confirmed that B. pseudomallei 
bacteria can contaminate ornamental fish tanks in 
an endemic area, yet its presence is not widespread 
in Vientiane Capital, Laos. Our findings probably 
underestimate the presence of B. pseudomallei bac-
teria, given the limitations in the sensitivity of en-
vironmental sampling methods, which have not 
been optimized for ornamental fish tanks. Because 
untreated tap water was the primary water source 
for tanks, the absence of B. pseudomallei bacteria 
suggests it is not widely present in tap water in 
Vientiane Capital. To our knowledge, no formal 
analysis of tap water samples in Vientiane has been 
performed; however, 2 studies undertaken in ru-
ral Thailand found B. pseudomallei bacteria present 
within some tap water samples (9,10). Our posi-
tive finding on qPCR does not prove the existence 
of viable organisms, but it is a possibility. Further 
studies are needed to investigate possible contami-
nation of tanks in other regions and to determine 
the risks this might imply for the international or-
namental fish trade. We suggest that susceptible 
persons having contact with fish tanks should take 
precautions and wear protective gloves while mini-
mizing contact with fish tanks.
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Staphylococcus succinus was first described in 1998 
and was isolated from 25- to 35-million-year-old 

Dominican amber (1). Members of this species are 
widespread in nature. Studies have reported the 
frequent isolation of S. succinus bacteria from vari-
ous sources, such as cheeses, dry or fermented meat 
products, the Dead Sea, and occasionally human 
specimens (2–4). We report a case of S. succinus in-
fective endocarditis in a patient in France who had 
many cardiovascular risk factors: age, sex, hyperten-
sion, dyslipidemia, diabetes, and weight. In accor-
dance with legislations in France and Europe, the use 
of anonymous data does not need approval of an eth-
ics committee. 

On hospital day 1, an 83-year-old man sought 
care for dyspnea and chest pain for 72 hours; he had 
evidence of global cardiac decompensation for a se-
vere ischemic heart disease with preserved left ven-
tricular ejection fraction. Cardiac blood marker anal-
ysis revealed an increased troponin level to 250 ng/L 
and thereafter 350 ng/L (reference range <14 ng/L). 
Electrocardiogram results showed ST-segment de-
pression in the lateral leads. In this context of non–
ST-segment elevation myocardial infarction, the pa-
tient was hospitalized in the cardiology unit. On day 
6, transthoracic echocardiography revealed an aortic 

valve bioprosthesis, reshaped, with a thickening of 
the cusps and a vibratory element attached on the 
ventricular side (7 × 4 mm), suggesting vegetation 
suspicious for infective endocarditis (Appendix Fig-
ure, https://wwwnc.cdc.gov/EID/article/30/2/23-
0986-App1.pdf). The patient became febrile. We col-
lected a total of 7 sets of aerobic and anaerobic blood 
bottle cultures during days 9–12; all showed a gram-
positive coccus in clusters. Matrix-assisted laser de-
sorption/ionization time-of-flight mass spectrom-
etry identification (VitekMS; bioMérieux, https://
www.biomerieux.com) indicated S. succinus with a 
99.9% index. 

The patient initially received 6 g intravenous 
cefazolin; on day 13 we changed the antimicrobial 
treatment to intravenous daptomycin (10 mg/kg) 
and gentamicin (3 mg/kg) every 48 h. Finally, after 
a dedicated endocarditis multidisciplinary consulta-
tion, we changed the patient’s regimen on day 22 to 
daptomycin (10 mg/kg) and rifampin (900 mg) for 
6 weeks. The patient returned home; follow-up care 
was scheduled with a hospital at home. The patient 
outcome was favorable without relapse or side effects 
from daptomycin/rifampin. His last cardiology ap-
pointment was 11 months after his initial treatment; 
no sequelae of endocarditis were present.

S. succinus susceptibility testing was a challenge. 
We performed methicillin resistance testing with cefoxi-
tin screen and oxacillin testing using the AST-P668 bio-
Mérieux card with a VitekXL automated system. How-
ever, we observed a discrepancy between the results 
from the 2 tests. To confirm oxacillin resistance, we test-
ed by agar diffusion method using impregnated disks 
and interpreted them in accordance with EUCAST (Eu-
ropean Committee on Antimicrobial Susceptibility Test-
ing) criteria (https://www.eucast.org/fileadmin/src/ 
m e d i a / P D F s / E U C A S T _ f i l e s / B r e a k p o i n t _
tables/v_13.0_Breakpoint_Tables.pdf). We used oxacil-
lin (1 μg) and cefoxitin (30 μg) disks (Bio-Rad, https://
www.bio-rad.com). The oxacillin (1 μg) disk diffusion 
method detected oxacillin resistance. In contrast, the iso-
late was susceptible when we used the cefoxitin (30 μg) 
disk test. In addition, we performed an oxacillin MIC 
strip test; MIC of 0.5 (mg/L), indicated that the strain 
was susceptible according to the EUCAST 2022 criteria.

A retrospective study (5) of penicillin-binding 
protein (PBP) assays indicating antimicrobial drug re-
sistance has shown that preinduction with cefoxitin/
oxacillin and reading of the test after 10 min (instead 
of 5 min) substantially improve the sensitivity, speci-
ficity, and robustness of the immunochromatograph-
ic assay PBP2a (Abbott, https://www.globalpoint 
ofcare.abbott) for coagulase-negative staphylococci. 
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Infective endocarditis is a rare condition in humans and is 
associated with high illness and death rates. We describe 
a case of infective endocarditis caused by Staphylococ-
cus succinus bacteria in France. We used several tech-
niques for susceptibility testing for this case to determine 
the oxacillin profile.



We performed PBP2a detection from bacterial culture 
after a preinduction with cefoxitin, but results were 
negative. Thereafter, we performed mecA gene detec-
tion by PCR to identify oxacillin-resistant Staphylo-
coccus (6); however, we did not detect the mecA gene  
by PCR.

Finally, we sent the isolate to the French Refer-
ence Center for Staphylococci (Lyon, France) on day 
19 for detection of other mec genes; this test result 
was negative. Staff at the reference center performed 
whole-genome sequencing of the strain as previously 
described (7); results revealed no site-specific inser-
tion sequences comprising direct-repeat sequences 
typical of a staphylococcal cassette chromosome–like 
cassette (8). To evaluate the possibility of resistance 
by PBP modification, we performed a disk diffusion 
method for antimicrobial susceptibility of imipen-
em (PBP1), cefotaxime (PBP2), oxacillin (PBP3), and 
cefoxitin (PBP4) (9,10). The cefotaxime diameter was 
reduced, indicating resistance in a strain, most likely 
by a modification of PBP2 (Figure; Appendix Table).

In conclusion, we identified environmental S. suc-
cinus behaving as an opportunistic pathogen as the 
cause of infective endocarditis in a patient with many 

cardiovascular risk factors. The source of S. succinus 
was not clearly established. Virulence factors con-
tributing to S. succinus pathogenicity are not yet well 
defined. We further described the difficulty of deter-
mining the resistance profile of this rarely pathogenic 
species mimicking either the borderline oxacillin-re-
sistant S. aureus phenotype with an elevated oxacillin 
MIC value, or to a lesser extent the modified S. aureus 
phenotype in the absence of mec gene–mediated re-
sistance. Our findings highlight the importance of a 
multiple-technology approach for laboratories assess-
ing methicillin resistance using a combination of phe-
notypic and genotypic methods.
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Monkeypox virus (MPXV), a double-stranded 
DNA virus that primarily infects rodents in 

sub-Saharan Africa, causes mpox disease. MPXV is 
a member of the genus Orthopoxvirus in the family 
Poxviridae. MPXV clade I is endemic to Central Africa 
and clade II to West Africa. Clade II is further subdi-
vided into IIa and IIb. Strains from the recent global 
emergence appear to belong to clade IIb (https://
nextstrain.org/mpox/all-clades).

The potential to unknowingly transmit MPXV 
from donated blood products exists despite routine 
stringent screening of bloodborne pathogens at dona-
tion centers. Thailand first reported mpox in a 27-year-
old male tourist from Africa in Phuket province on 
July 21, 2022; nonoutbreak sporadic infections have 
since been identified (1). By May 2023, ≈40 infections 
had been laboratory-confirmed. Infections surged 
after Pride Festivals, which took place in Bangkok 
and Pattaya City in June 2023; infections peaked in 
August and then declined. As of November 4, 2023, 
the Ministry of Public Health Thailand (MoPH) had 
identified 582 infections (563 male and 19 female pa-
tients; median age 33 years, age range 1–64 years) and 
2 deaths. Here, we describe an unintended adminis-
tration of platelets from an MPXV-infected donor to a 
dengue-infected recipient and the subsequent follow-
up to monitor for potential MPXV transmission.

On July 24, 2023, an apparently healthy 22-year-
old man donated whole blood at the National Blood 
Center (NBC) of the Thai Red Cross in Bangkok (Fig-
ure). That afternoon, he experienced fever and mal-
aise. On July 26, itchy skin rash and lesions appeared 
on his hands, feet, and anus, which prompted him to 
go to a hospital. His doctor sought consultation with 
the Department of Disease Control at MoPH, where 
samples of the skin lesion, oropharyngeal swab, and 
plasma were tested for MPXV by real-time PCR to 
detect the F3L gene region (BioPerfectus, https://
www.bioperfectus.com). MPXV DNA was detect-
ed only in the lesion (cycle threshold [Ct] 21.7) and 
oropharyngeal (Ct 31.5) swab samples.

NBC processes blood donations individually and 
routinely screened for hepatitis B/C and syphilis. De-
rived products from donations are primarily leuko-
cyte-poor red cells, leukocyte-depleted pooled plate-
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In Thailand, platelet product from a blood donor was 
transfused to a recipient who had dengue. Two days later, 
the donor was confirmed to have monkeypox virus infec-
tion. Monkeypox virus DNA was undetectable in recipient 
specimens up to 2 weeks after transfusion. The recipient 
remained asymptomatic at 4 weeks of monitoring.



let concentrate, and fresh frozen plasma, prepared  
in accordance with guidelines of the European Di-
rectorate for the Quality of Medicines & Healthcare 
(2). Specifically, the platelet concentrate is prepared 
from a pool of 4 donor buffy coats of the same ABO 
blood group, diluted with either plasma from one of 
the buffy coat donations or a platelet additive solu-
tion, centrifuged to separate the platelets, filtered to 
deplete leukocyte, and stored for bacterial testing be-
fore distribution.

On July 31, the NBC was alerted to the potential 
of an MPXV-contaminated donation, which prompt-
ed recalls of all blood components derived from the 
22-year-old donor. That same day, red blood cells 
and plasma derived from the donor materials were 
successfully retrieved and destroyed; however, the 
platelet concentrate had already been administered 
to an 11-year-old female recipient who had ongoing 
dengue infection.

To characterize MPXV in the donation, our labora-
tory received residual donor plasma and red cells that 
the NBC had, from which we extracted DNA by using 
the magLEAD 12 gC instrument (Precision System Sci-
ence, https://www.pss.co.jp) according to the manu-
facturer’s instructions. We tested for MPXV DNA by 
generic real-time PCR to detect the tumor necrosis  

factor receptor gene located at the terminal inverted re-
peat region on the MPXV genome, in accordance with 
the US Centers for Disease Control and Prevention 
protocol (3). We confirmed the result using conven-
tional PCR to amplify the DNA helicase and Schlafen 
protein genes (Appendix, https://wwwnc.cdc.gov/
EID/article/30/3/23-1539-App1.pdf). We Sanger se-
quenced amplicons, and deposited nucleotides into 
GenBank (accession nos. OR790439–40).

Plasma yielded detectable MPXV DNA (Ct ≈35); 
red blood cells did not. Phylogenetic analysis of the 
DNA helicase gene sequence suggests that the MPXV 
strain in the donor belonged to clade IIb (lineage B) 
and genetically clustered with strains previously 
identified in Taiwan, Japan, and the United States 
(88% bootstrap support) (Appendix Figure). 

MPXV DNA was undetectable in serum and 
throat swab samples collected from the platelet re-
cipient on August 1, 3, 7, and 14. No mpox-associ-
ated symptoms were evident 4 weeks posttransfu-
sion. Incubation period for mpox is 3–17 days (mean  
8.5 days) (4,5).

We posit that there was a low risk for transfusion-
transmitted infection for several reasons. First, detec-
tion of MPXV DNA in the residual donated plasma 
does not indicate infectious virus, as was shown 
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Figure. Timeline of MPXV-infected blood donor (red) and platelet recipient (blue), Thailand, 2023. MPXV, monkeypox virus.



in a viral load study using cell culture as surrogate 
for infectivity (6). Thus, nucleic acid detection does 
not prove the presence of viable or infectious virus, 
as Cohen et al. demonstrated in a smallpox-vaccine 
study (7). We pooled and extensively prepared plate-
let products from multiple donors, which may have 
diluted out any residual virus before transfusion 
1 week later. In conclusion, our study shows that a 
blood donation from a donor with detectable MPXV 
viral DNA did not appear to transmit the infection to 
a pooled-platelet recipient.
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Anopheles stephensi is an invasive mosquito spe-
cies originating from parts of Southeast Asia 

and the Arabian Peninsula (1). Over the past decade, 
An. stephensi mosquitoes have been expanding in 
range and have now been documented in several 
countries in Africa (2). First detected in Djibouti, on 
the Horn of Africa, in 2012, this vector has been im-
plicated in urban malaria outbreaks (3). They were 
also detected in Ethiopia in 2016 and 2018 (4,5). An. 
stephensi mosquitoes were subsequently detected in 
Sudan (2016), Somalia (2019), Nigeria (2020), and 
Kenya (2023) (2,3,5–7). This invasive vector poses a 
major threat to current malaria control and elimina-
tion efforts. The ability of An. stephensi mosquitoes to 
breed in artificial containers enables them to thrive 
in urban areas, setting them apart from other major  
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The invasive Anopheles stephensi mosquito has rapidly 
expanded in range in Africa over the past decade. Con-
sistent with World Health Organization guidelines, rou-
tine entomologic surveillance of malaria vectors in Accra, 
Ghana, now includes morphologic and molecular surveil-
lance of An. stephensi mosquitoes. We report detection of 
An. stephensi mosquitoes in Ghana.



malaria vectors (8). This species can also transmit 
both Plasmodium falciparum and P. vivax protozoa (1). 
Although malaria is widely a rural disease, trans-
mission in urban areas may rise because of the estab-
lishment of An. stephensi mosquitoes, putting ≈126 
million persons at risk of malaria (2,8). The World 
Health Organization issued an initiative in 2022 
aimed at strengthening surveillance to help stop the 

spread of An. stephensi mosquitoes in sub-Saharan 
Africa (2). Morphologic and molecular surveillance 
of An. stephensi mosquitoes were incorporated into 
routine entomologic surveillance of malaria vectors 
in the city of Accra, Ghana, after the World Health 
Organization initiative (2). This study outlines the 
entomologic surveillance that documents the identi-
fication of this invasive species in Ghana.
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Figure. Routine entomologic surveillance sites, Accra, Ghana, January 2022–July 2022. Inset map shows location of Ghana in Africa.

 
Table. Sequencing results of suspected Anopheles stephensi mosquito samples, Accra, Ghana 

Sample ITS2 contig BLAST result† 
GenBank accession no. 

of best match 
% Identity 

match 
Final species 
identification 

GenBank 
accession no. 

DN 035 283 An. stephensi voucher MH650999.1 100 An. stephensi OR711900 
TP 002S 283 An. stephensi voucher MH650999.1 100 An. stephensi OR711899 
*ITS2, internal transcribed spacer 2 region. 
†BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi. 

 



We conducted routine entomologic surveillance 
in 8 sites within the city of Accra, Ghana, during 
January 2022–July 2022 (Figure). We conducted lar-
val sampling in all mosquito larval breeding habitats 
encountered in each of the sites. We recorded the total 
number of dips, larvae, and pupae, and we calculated 
the larval density as the ratio of the number of larvae 
collected per dip. We conducted larval sampling in 
the dry (February–March) and rainy (June–July) sea-
sons of 2022. We transported larval samples to the in-
sectary at the Department of Medical Microbiology, 
University of Ghana Medical School (Accra, Ghana), 
where we raised them into adults for morphologic 
and molecular species identification. We further iden-
tified members of the An. gambiae sensu lato. complex 
and sibling species by using PCR. We performed PCR 
amplifications to detect An. stephensi mosquitoes by 
using primers targeting the internal transcribed spac-
er region on the basis of on previously described pro-
tocols by Singh et al. (9). After PCR, were subjected 
2 mosquitoes to Sanger sequencing of the internal 
transcribed spacer 2 regions and analyzed them on 
the basis of comparisons to the National Center for 
Biotechnology Information database.

We identified a total of 1,169 mosquitoes obtained 
from the larval sampling by using morphologic keys 
and PCR methods for speciation. Out of that num-
ber, 551 (47.13%) were An. gambiae sensu stricto, 582 
(49.79%) An. coluzzii, and 32 (2.74%) hybrids of both 
species. We identified 4 samples (0.34%) as An. stephen-
si by using a modified PCR-based method by Singh  
et al. (9) and sequencing (Appendix Table 1, https://
wwwnc.cdc.gov/EID/article/30/2/23-1638-App1.
pdf). Results from BLAST analysis (https://blast.ncbi.
nlm.nih.gov/Blast.cgi) showed that the An. stephensi 
mosquito samples had 100% sequence similarity with 
An. stephensi voucher A268 5.8S ribosomal RNA gene 
and internal transcribed spacer 2 (GenBank accession 
no. MH650999.1) (Table).

We found An. stephensi mosquitoes in larval 
samples from urban areas of Accra, Ghana, specifi-
cally the suburbs of Tuba, Dansoman, and Nima. We 
found An. stephensi mosquitoes breeding in dugout 
wells within irrigated vegetable farms and roadside 
ditches (Appendix Figure), habitats that are distinct 
from the typical ones observed in Asia and East Af-
rica. In addition, An. stephensi larvae were present 
alongside An. gambiae s.s. and An. coluzzii mosquitoes, 
even though An. stephensi larvae are usually present 
alongside Aedes mosquitoes.

The spread of An. stephensi mosquitoes in Africa 
is thought to have occurred through land borders, 
air travel, or seaports. However, we discovered the  

mosquitoes at considerable distances from those 
points of entry, suggesting possible earlier introduc-
tions. Expanding surveillance efforts for An. stephensi 
mosquitoes is crucial to curbing the dissemination of 
this invasive species within Ghana, which could po-
tentially elevate malaria prevalence in the city of Ac-
cra, traditionally considered a low malaria transmis-
sion zone within Ghana.

This report of the invasion of An. stephensi mos-
quitoes in Accra, Ghana, represents a major public 
health concern, given the heightened risk of urban 
malaria outbreaks. It is imperative to reinforce sur-
veillance and response strategies in both rural and 
urban settings across Ghana, with specific attention 
directed toward An. stephensi mosquitoes, to mitigate 
the spread of this invasive species.
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Rat-bite fever (RBF) is a rare disease that typically 
manifests with fever, rash, and arthritis (1). Pos-

sible complications are abscess formation, endocar-
ditis, and death if left untreated (1,2). Streptobacillus 
moniliformis bacteria is the main causative pathogen 
of RBF (3). Norway rats (Rattus norvegicus) are the 
natural host and usually carry S. moniliformis bacteria 
asymptomatically in their nasopharynx (3,4). Trans-
mission occurs typically by rat bite or scratch but also 
by nontraumatic indirect contact.

We describe a case of a 32-year-old woman who 
came to an emergency department in Germany in 
May 2022 with fever, fatigue, and migrating arthral-
gia in the large and small joints of all 4 extremities, 
without signs of joint swelling or rash. She had a 
short history of diarrhea, and her first set of blood 
cultures were negative. She was initially diagnosed 
with reactive arthritis and transferred to the rheu-
matology department. We initiated treatment with 
20 mg prednisolone and etoricoxib. The patient had 
initial relief of symptoms and was discharged after 6 
days in the hospital. A small papule on her right foot  
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We describe a case of endocarditis caused by Strepto-
bacillus moniliformis bacteria, a known cause of rat-bite 
fever, in a 32-year-old woman with pet rats in Germany. 
The patient had a strong serologic response, with high 
IgM and IgG titers. Serologic analysis is a promising tool 
to identify S. moniliformis bacterial infection.



appeared immediately after discharge. A few days 
later, she went to the dermatology department with 
a fever and red, nonitching papules on hands, legs, 
and feet (Figure 1). We examined the papules, finding 
them comparable to Janeway lesions, and took a biop-
sy from the right hand. We collected a second blood 
culture that was positive within 18 hours with growth 
of a gram-negative bacilli. We identified S. monilifor-
mis bacteria by using matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry. 

The patient was readmitted. In an extended history, 
she reported having 3 Norway rats as pets. Our further 
investigation revealed an 11-mm size vegetation on the 
right coronary cusp of the aortic valve; we observed no 
signs of insufficiency during echocardiography. The pa-
tient was diagnosed with RBF and probable aortic valve 
endocarditis because of meeting 1 major criterion (posi-
tive echocardiography) and 2–3 minor criteria (fever, 
positive blood culture, and suspected Janeway lesions) 
of the modified Duke criteria (5).
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Figure 1. Rat bite fever lesions 
on 32-year-old female patient, 
Germany, 2022. At the time of 
patient’s readmission, reddish 
papules appeared on the palms 
of the hands (A), soles of the 
feet (B), and legs (C). 

Figure 2. Antibody response 
to Streptobacillus moniliformis 
infection over time on 32-year-
old female patient, Germany, 
2022. The graph displays the 
dynamics of IgM (serum dilution 
1:100) and IgG (serum dilution 
1:250) levels in MFI values 
analyzed by Streptobacillus 
multiplex serologic tests (y-axis) 
and plotted against the time 
point of infection (x-axis). MFI, 
median fluorescence intensity.



After we identified the causative pathogen, we 
began an intravenous therapy with penicillin G (4 × 5 
million IU) for 14 days. Because endocarditis was dis-
covered late in the diagnostic process and no further 
complications arose, we continued monotherapy under 
frequent clinical and echocardiographic controls. After 
14 days, we changed the therapy to oral amoxicillin (4 
× 1 g) for another 4 weeks. Two weeks after the start of 
oral therapy, we no longer detected the aortic vegeta-
tion. Two weeks after therapy concluded, the patient 
reported well-being and no persistent symptoms.

We used a phylogenetic approach to group the 
microorganism from this study to closely related 
taxa (Appendix, https://wwwnc.cdc.gov/EID/
article/30/3/23-0917-App1.pdf). The resulting tree 
confirmed the taxonomic position of the isolate from 
this study as a member of S. moniliformis bacteria.

In addition to microbiologic work-up, we ana-
lyzed serum samples from different time points for 
S. moniliformis bacteria–specific antibodies by using 
Streptobacillus multiplex serologic analysis. We found 
high IgM and IgG antibody levels in the patient’s se-
rum 9 days after symptom onset. IgM levels of sub-
sequent measurements decreased, and IgG levels 
initially increased before declining approximately 3 
weeks after the onset of symptoms (Figure 2).

Several aspects hamper the diagnosis of RBF, in-
cluding unawareness of the disease among most cli-
nicians, lack of reliable diagnostics, fastidious growth 
of the microorganism, susceptibility to most anti-
biotics used for empiric therapy (3), and unnoticed 
animal contact (6). Therefore, the incidence of RBF is 
unknown and difficult to estimate, especially because 
RBF is a nonnotifiable disease worldwide. Most of the 
published case reports do not properly identify the 
causative organism because they rely solely on 16S 
rRNA gene sequencing, which is insufficient for an 
accurate identification at species level (6).

In cases where direct detection methods, such as 
pathogen isolation or molecular testing, are not suc-
cessful, serologic analysis could be a useful tool for 
clinical decision-making. High initial IgM and IgG 
levels of S. moniliformis bacteria–specific antibodies 
were measured in the patient by using Streptobacillus 
multiplex serologic analysis. However, because sero-
logic tests for S. moniliformis bacteria are not commer-
cially available nor readily accessible, the prevalence 
of RBF among humans is unknown. Further serologic 
studies could help to estimate the occurrence of RBF 
by shedding light on a largely unknown and under-
reported disease (6). Novel PCR tools could help to 
reduce the number of undetected infections and en-
able appropriate treatment.

This case report highlights the benefits of a One 
Health approach to healthcare in daily practice. Vet-
erinary healthcare provided valuable information for 
clinicians regarding this rare disease and provided 
a serologic assay originally developed for the health 
monitoring of laboratory rodents and adapted for hu-
man application. Population-level serologic studies 
are needed to assess disease prevalence in high-risk 
groups. This case shows the possibility of species-spe-
cific RBF diagnosis in cases where direct diagnostic 
tools prove to be negative. 
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Leishmania spp. are parasitic protozoans that cause 
human leishmaniasis in multiple forms, including 

visceral leishmaniasis (VL), which affects the internal 
organs. For decades, the Indian subcontinent (ISC)—a 
geographic region that includes Bangladesh, Bhutan, 
India, Maldives, Nepal, Pakistan, and Sri Lanka—
was the most endemic region for VL in the world. In 
2005, a regional elimination program was launched 
in India, Nepal, and Bangladesh, aiming to reduce 
VL annual incidence to <1 case/10,000 population at 
subdistrict and district levels (1). Before the start of 
the program, VL in Nepal was confined mainly to 12 
VL endemic districts (out of 77), located in the eastern 
lowlands. Recently, VL cases in Nepal have spread 
westward, as well as from lowlands to hilly and even 
mountainous areas, resulting in a current total of 23 
official VL endemic districts, with many more dis-
tricts reporting likely indigenous cases (1). Cutaneous 
leishmaniasis is also becoming more common (2), and 
combined cases of VL and cutaneous leishmaniasis 
have been reported, without any information to date 
on the parasite species and genotype involved. There 
is clearly a need for a postelimination surveillance 
system adapted to this new epidemiologic profile.

Molecular surveillance of infectious diseases may 
provide the most relevant information for control 

programs, such as following the evolution of epidem-
ics in time and space, characterizing of new transmis-
sion cycles, conducting outbreak studies and source 
identification, and detecting new variants with new 
clinical features (3). Currently, no molecular surveil-
lance is being implemented for leishmaniasis in the 
world, despite the existence of suitable technologies. 
We previously showed the feasibility and added val-
ue of direct whole genome sequencing (SureSelect se-
quencing [SuSL-seq]; Agilent Technologies, https://
www.agilent.com) of L. donovani in host tissues, with-
out the need for parasite isolation and cultivation (4).

Here, we demonstrate the proof-of-principle of 
SuSL-seq for genome surveillance of leishmaniasis, 
in the context of the reported expansion of VL to the 
western regions of Nepal. We collected blood samples 
in 2019 and stored them on DNA/RNA Shield (Ap-
pendix). We performed sequencing on 3 samples with 
the highest amounts of DNA, positive for Leishmania, 
and originating from 3 different districts in Nepal 
(Dolpa, Darchula, and Bardiya) (Appendix Table 1, 
Figure 1) and compared them with our database of L. 
donovani genome sequences from the ISC. All samples 
showed a high genome coverage (Appendix Table 2). 
The database comparison samples originated from 204 
cultivated isolates (2002–2011) from Nepal, India, and 
Bangladesh (5); 52 clinical samples (2000–2015) from 
Nepal (4); and 3 isolates (2002, 2010) from Sri Lanka 
(6,7). Altogether, these earlier studies reported 4 main 
genotypes: a large core group (CG), genomically very 
homogeneous, in the lowlands of India, Nepal, and 
Bangladesh; a small ISC1 population, genomically 
very different from CG, in hilly districts of Eastern Ne-
pal; a single divergent isolate from Nepal, BPK512; and 
a Sri Lanka (SL) cluster. New phylogenomic analyses 
(Figure) revealed that the samples from the 3 new foci 
from western Nepal were clearly distinct from CG and 
SL: one ISC1-related lineage (024) had not been report-
ed previously, and the 2 other lineages (022 and 023) 
clustered together with BPK512.

It is premature to conclude that ISC1-related (024) 
and BPK512-like (022, 023) parasites are expanding, 
spreading, and replacing CG in a postelimination 
phase. However, a study based on single-locus ge-
notyping showed a much higher proportion of ISC1 
and unclassified genotypes (and a strong decrease of 
CG) during 2012–2014 compared with 2002–2011 (9). 
Considering the genomic differences between these 
lineages and CG and their transmissibility by Phle-
botomus argentipes (10), we recommend particular at-
tention to the further evolution of parasites in regions 
of the ISC. Our previous work evidenced several im-
portant functional differences between isolates from 
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We sequenced Leishmania donovani genomes in blood 
samples collected in emerging foci of visceral leishmani-
asis in western Nepal. We detected lineages very differ-
ent from the preelimination main parasite population, in-
cluding a new lineage and a rare one previously reported 
in eastern Nepal. Our findings underscore the need for  
genomic surveillance.



ISC1 and CG (Appendix), and we found in this inves-
tigation allele differences in 8 of 10 genes previously 
shown to be involved in L. donovani drug resistance 
(Appendix Figure 2). Of particular interest, those ge-
netic variants are common in the ISC1 group and in 
the BPK512 but never found in CG parasites. Without 
experimental confirmation, it is difficult to speculate 
about the exact impact of this polymorphism on the 
resistance to antileishmanial drugs, but it is clear that 
these parasites are genetically (and, likely, function-
ally) very diverse from the CG parasites, which were 
the main target of the recent elimination efforts.

Molecular surveillance requires a method ap-
plicable on routine samples collected in any type of 
field settings. We demonstrate that small amounts of 
blood from routine examination of patients with VL 
could be successfully used for direct, sensitive, and 
untargeted whole-genome analysis of Leishmania. 
Our optimized SuSL-seq protocol enables highly dis-
criminatory genotyping and targeted analysis of the 
genetic variation within selected loci as well as untar-
geted searching for new markers related to a clinical 
or epidemiologic question. Our research supports the 
need for genomic surveillance of VL—in particular in 
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Figure. Phylogenetic analyses of Leishmania donovani from the ISC, including Nepal, and reference sequences. Trees were based 
on genomewide single-nucleotide polymorphisms using RAxML (8). A) Unrooted phylogenetic network of the L. donovani complex, 
showing samples representing the emerging foci (bold text). B) Rooted phylogenetic tree of reference strains of L. donovani from the 
ISC, showing the branching of 3 samples (022, 023, and 024) originating from emerging foci. Important bootstrap values are indicated 
on the branches. The West-African LV9 strain is included as an outgroup. BPK72_SuSL represents an ISC1 sample analyzed using 
SureSelect sequencing (Agilent Technologies; https://www.agilent.com), confirming that the branching of the emerging foci is not a result 
of a technical artifact. Scale bars indicate number of single-nucleotide polymorphism differences. ISC, Indian subcontinent.



the context of the current elimination program in the 
ISC—and demonstrate the applicability of SuSL-seq 
to molecular surveillance of blood. Continued col-
laborations will be required to translate these new 
approaches for VL surveillance to the specific needs 
of the region.

This article was published as a preprint at https://www.
biorxiv.org/content/10.1101/2023.08.22.554278v1.

Genomic sequence reads of the parasites from the 3 new 
foci are available on the European Nucleotide Archive 
(https://www.ebi.ac.uk/ena) under accession no. 
PRJNA991731. 
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Microsporidia, fungal-related single-cell para-
sites, infect a broad range of vertebrates and 

invertebrates. The most identified species of Micro-
sporidia in humans are Enterocytozoon bieneusi and 
Encephalitozoon intestinalis, which have emerged as 
opportunistic pathogens in immunosuppressed per-
sons, such as those infected with HIV, organ trans-
plant recipients, and cancer patients. The infective 
forms of these parasites are the resistant spores 
that persist in the environment, causing infections 
through direct contact with infected persons, infect-
ed animals, or ingestion of contaminated water and 
food (1). Human microsporidiosis is characterized 
primarily by chronic diarrhea and wasting, with less 
frequent occurrences of extraintestinal disseminated 
disease. Identification to the genus and species level 

is crucial for tailored treatments, especially in cases 
of chronic diarrhea (2).

Pediatric patients undergoing allogeneic hema-
tologic stem cell transplantation (HSCT) may experi-
ence gut-localized or extraintestinal microsporidiosis 
by Encephalitozoon spp (3). In patients with leukemia 
or lymphoma who receive cytotoxic treatments, in-
testinal infections are predominantly associated with  
E. bieneusi, and rare cases of extraintestinal dissemi-
nation also have been reported (1,4).

More than 500 worldwide genotypes of E.  
bieneusi have been identified based on genetic 
polymorphisms in the internal transcribed spacer 
of the rRNA gene. They are distributed into 11 
distinct phylogenetic groups, with groups 1 and 
2 comprising genotypes with zoonotic potential  
that infect humans and various mammalian and 
avian species (2).

Although intestinal microsporidiosis is prevalent 
in children residing in developing countries, scarce 
studies have been reported in Argentina (1,5,6). We 
present a case of E. bieneusi (genotype D) infection in 
a child who underwent unrelated allogeneic HSCT in 
Buenos Aires, Argentina. 
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We report a case of Enterocytozoon bieneusi infection 
in a pediatric hematopoietic stem cell transplant recipi-
ent in Argentina. Spores were visualized in feces using 
Calcofluor White and modified trichrome stainings. PCR 
and sequencing identified E. bieneusi genotype D in fe-
cal samples and liver samples, confirming extraintestinal 
dissemination of the parasite.

Figure. Enterocytozoon bieneusi 
detection in fecal sample and 
liver aspiration biopsy sample 
from a child with hematopoietic 
stem cell transplant, Argentina. 
A) Light microscopy of fecal 
samples after Weber’s modified 
trichome staining showing ovoid 
shaped-spores with a pinkish-red 
stained wall (arrows). Original 
magnification × 1,000; scale 
bars = 5 µm. B) Closer view of 
boxed area in panel A, showing 
spores (arrows). C) Agarose gel 
electrophoresis (2%) showing 
amplification products (≈390 
pb) from nested PCR with inner 
primers EBITS1 and EBITS2 
from patient fecal sample. 
Lane L, molecular weight 
ladder; lane 1, negative control 
(water); lanes 2 and 3, fecal 
samples from healthy donors; 
lane 4, positive feces control 
for E. bieneusi; lanes 5 and 6, 
fecal samples from patient. D) 
Nested PCR products from liver 
aspiration biopsy sample. Lane 
L, molecular weight ladder; lane 
1, fecal sample from healthy 
donor; lane 2, fecal sample from 
patient; lane 3, liver aspiration 
biopsy sample from patient.



The Study
A 12-year-old boy from Buenos Aires who had a Jan-
uary 2018 diagnosis of intermediate-risk pre-B acute 
lymphoblastic leukemia received an unrelated allo-
geneic HSCT in February 2022. A month after HSCT, 
the child was treated with antiviral therapy for reacti-
vation of cytomegalovirus, adenovirus, and Epstein-
Barr virus infections. Three months post-HSCT, un-
der immunosuppressive therapy with tacrolimus (0.1 
mg/kg/d), he received antimicrobial treatment with 
meropenem (60 mg/kg/d), linezolid (30 mg/kg/d), 
and liposomal amphotericin B (3 mg/kg/d) to com-
bat prolonged fever and abdominal symptoms. Vid-
eoendoscopy of the upper digestive tract confirmed 
gastrointestinal graft-versus-host disease, and ultra-
sound showed splenomegaly with multiple rounded 
hypodense images in the spleen and liver. We also 
noted distension of the ileal and colonic loops, pre-
dominantly in the right colon, and ascites.

We treated the child with liposomal amphoteri-
cin B (3 mg/kg/d) to address persistent febrile symp-
toms and visceral lesions compatible with chronic 
disseminated candidiasis. Four months after HSCT, 
the child sought treatment for chronic diarrhea (>1 
month) and abdominal pain. Prior to microbiological 
documentation, we prescribed empirical treatment 
of metronidazole (30 mg/kg/d), which produced no 
improvement of symptoms. 

Coproanalysis revealed typical polymicrobial 
bacterial flora, with no detection of bacterial toxins, 
adenovirus, rotavirus, or parasites. Calcofluor White 
and Weber’s modified trichrome staining revealed 
structures compatible with microsporidian spores in 
single and serial fecal specimens (Figure, panels A, B). 
Analysis of liver aspiration biopsy samples rendered 
no conclusive results. On the basis of microscopic 
results, we immediately initiated albendazole treat-
ment (400 mg/d) for microsporidiosis (7).

We conducted molecular biology studies based on 
fecal samples and liver aspiration biopsy samples. We 
determined E. bieneusi and genotype identification by 
using a nested PCR protocol that targeted the entire in-
ternal transcribed spacer and also amplified portions of 
the flanking large and small subunits of the ribosomal 
RNA (≈400 bp) gene (8,9) (Figure, panels C, D). We con-
firmed the presence of E. bieneusi genotype D based on 
Sanger sequencing using the inner-nested PCR primers 
(2). We named the nucleotide sequence generated BsAs1 
and deposited it into GenBank (accession no. OP650902). 
Despite a decrease in diarrhea symptoms, the child died 
18 days after initiation of albendazole treatment due to 
fulminant hyperacute lymphoproliferative syndrome, 
before identification of E. bieneusi was determined.

Conclusions
E. bieneusi has been reported commonly in cancer 
patients undergoing chemotherapy (1,3,4,10). We re-
port a case of E. bieneusi genotype D microsporidiosis, 
with intestinal and hepatic localization, in a child 
with leukemia and immunosuppression after a bone 
marrow transplant in Argentina. Our findings high-
light the need to incorporate microsporidiosis in the 
differential diagnosis of immunosuppressed children 
after transplant surgery, as well as for other patient 
populations at high risk for opportunistic infections. 
Our report also emphasizes the critical importance of 
microsporidia identification because albendazole is 
effective against some Encephalitozoon species but not 
against E. bieneusi (1,7). Genotyping isolates of clini-
cal E. bieneusi may help to identify potential environ-
mental sources. Although nitazoxanide could be used 
as an alternative treatment, fumagillin has a wider 
range of activity effectively targeting E. bieneusi (7). 
The unavailability of fumagillin for treating human 
infections in several countries, including Argentina, 
underscores the need for enhanced accessibility to 
microsporidia treatment options, especially for vul-
nerable populations. 
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Streptococcus suis is a zoonotic pathogen that affects 
pigs and humans when they handle pigs or eat un-

dercooked pork products. Globally, an outbreak of infec-
tion occurred in China in 2005, and S. suis is a common 
cause of bacterial meningitis in Vietnam and Hong Kong 
(1,2). High-risk eating habits of ingesting raw or under-
cooked pork also have been reported in Thailand (2).

Although S. suis infection traditionally is associ-
ated with pig contact or consumption of undercooked 
pork, South Korea reported its first human infection 
in 2012, with subsequent cases not explicitly linked to 
pigs (3). Of note, consuming raw pork is rare in South 
Korea because of cultural taboos. In South Korea, 
the prevalence of S. suis infection was 12.6% among 
slaughtered pigs and 16.4% among diseased pigs; se-
rotypes 2 and 14 were predominant in the Jeju area 
compared with other regions (4).

Common manifestations of S. suis infection are 
meningitis, endocarditis, septicemia, and arthritis 
but not subdural empyema (2). Subdural empyema 
is a rare but serious infection that causes a collection 
of pus between the dura and arachnoid layers of the 
meninges (5). We describe a case of subdural empy-
ema caused by to S. suis infection after the consump-
tion of raw pig products in Jeju Island, South Korea, 
where the pork industry has been an economic pillar 
for over 500 years. 
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In Jeju Island, South Korea, a patient who consumed 
raw pig products had subdural empyema, which led to 
meningitis, sepsis, and status epilepticus. We identi-
fied Streptococcus suis from blood and the subdural 
empyema. This case illustrates the importance of con-
sidering dietary habits in similar clinical assessments to  
prevent misdiagnosis.



The patient, a 76-year-old man, visited the emer-
gency department exhibiting dysarthria, neck stiff-
ness, and right-sided weakness with motor grade III. 
He did not have hearing loss, a common symptom 
of human S. suis infection, or signs of increased in-
tracranial pressure such as papilledema. His medi-
cal history included a fall 3 months prior and recent 
headache and dizziness. Initial brain computed to-
mography and magnetic resonance imaging showed 
chronic subdural hematoma (cSDH) with recurrent 
bleeding and an inflamed subdural sac (Figure 1). 
Concurrently, he exhibited septic symptoms, such as 
fever, hypotension, marked thrombocytopenia, and 
elevated inflammatory markers, necessitating im-
mediate administration of antibiotics (vancomycin, 
ceftazidime, and metronidazole). Further studies 
showed that he did not have endocarditis, sinusitis, 
or otitis media (all possible causes of subdural em-
pyema) (5). We drew blood cultures on admission 
day and on hospital days 4 and 7 and incubated 
them for >5 days. On hospital day 4, we detected 
S. suis from a blood culture. Subsequent inquiries 

into the patient’s dietary habits revealed recent con-
sumption of Ae-Jeo-Hoe, a traditional dish from Jeju 
Island, made by slicing open the belly of a pregnant 
pig, finely chopping or grinding the fetus, and eat-
ing it raw with various seasonings. Consequently, 
we conducted further microbiologic investigations 
to rule out other conditions, such as severe fever 
with thrombocytopenia syndrome and cysticercosis, 
which all turned out negative.

Upon confirmation of S. suis infection, treatment 
shifted to ceftriaxone. Results of blood cultures from 
days 4 and 7 were negative, but neurologic deficits 
persisted. On day 10, we evacuated a subdural em-
pyema through left frontal and parietal burr hole 
trephinations. Intraoperatively, we identified a mul-
tiseptated pus-like tissue and a bloody subdural 
fluid. Despite the negative swab and fluid culture 
results, PCR confirmed S. suis gdh and thrA genes 
in the subdural empyema sample (Figure 2). We 
extracted total genomic DNA from blood-cultured 
bacteria and from the patient’s subdural hematoma 
by using the Solg Genomic DNA Prep Kit (SolGent, 
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Figure 1. Initial image findings of subdural empyema in a patient with Streptococcus suis infection, Jeju Island, South Korea. A, B) 
Computed tomography scans. D–F) Magnetic resonance imaging: diffusion weighted (D, E), T2 (C), and enhanced T1 (F). 



http://www.solgent.com) according to the manu-
facturer’s instructions. We detected S. suis DNA by 
using the gdh-specific primers GCAGCGTATTCTGT-
CAAACG (forward) and CCATGGACAGATAAA-
GATGG (reverse) (6), and the thrA-specific primers 
GAAAATATGAAGAGCCATGTCG (forward) and 
GACAACGAACATAACAGAAACTTC (reverse) (7). 
In addition, we conducted next-generation whole-
genome sequencing (Theragen Bio, https://www.
theragenbio.com), which identified the isolate as 
serotype 2, which closely matched the genetic se-
quence of the ISU2614 strain (GenBank accession no. 
ASM1348816v1), known for its high virulence (8,9) 
(Appendix Figure, https://wwwnc.cdc.gov/EID/
article/30/3/23-1018-App1.pdf).

On day 16, the patient had onset of convulsive 
status epilepticus potentially attributable to menin-
gitis, which was managed by a continuous infusion 
of propofol. The patient was subsequently stabilized, 
and his neurologic symptoms improved.

This case is noteworthy because it represents a 
neurosurgical condition, specifically subdural em-
pyema, which required surgery, associated with S. 
suis infection. In addition, severe conditions such as 
sepsis and status epilepticus after the infection under-
score the lethality of this zoonotic pathogen.

The role of the patient’s cSDH caused by prior 
trauma warrants further discussion in the pathogene-
sis of the infection. The vascularized membrane of the 
cSDH may have served as a seeding bed for the he-
matogenous spread of the infection and development 
of the subdural empyema (10), suggesting increased 

susceptibility in patients with cSDH or older patients 
with a trauma history and emphasizing the need for 
prompt diagnosis and treatment.

This report highlights a unique correlation to con-
suming a traditional dish prepared from raw pig fetuses 
and underscores the importance of considering dietary 
habits in the clinical assessment. It also raises public 
health concerns about the potential risks associated with 
consuming raw or undercooked pork products and pos-
sible S. suis endemic in Jeju Island, where extensive pig 
rearing and consumption take place. Increasing disease 
awareness among clinicians and laboratories can pre-
vent undiagnosed or misdiagnosed cases.

E.T.K. was supported by the National Research Foundation 
of Korea grant, funded by the Ministry of Science and 
Information and Communication Technology (grant no. 
2021R1A2C1010313) and the Ministry of Education  
(grant no. RS2023-00270936), South Korea.

About the Author
Dr. Choi is a neurosurgery resident at Seoul National 
University Hospital. His primary research interests include 
neurosurgical diseases and public health.

References
  1. Wertheim HF, Nghia HD, Taylor W, Schultsz C, Taylor W,  

Schultsz C. Streptococcus suis: an emerging human pathogen. 
Clin Infect Dis. 2009;48:617–25. https://doi.org/10.1086/ 
596763

  2. Huong VTL, Ha N, Huy NT, Horby P, Nghia HDT,  
Thiem VD, et al. Epidemiology, clinical manifestations, and 
outcomes of Streptococcus suis infection in humans. Emerg 
Infect Dis. 2014;20:1105–14. https://doi.org/10.3201/
eid2007.131594

  3. Kim J-G, Seong GM, Kim YR, Heo ST, Yoo JR. Streptococcus 
suis causes bacterial meningitis with hearing loss in patients 
without direct exposure to pigs in a regional pork industry 
territory. J Med Life Sci. 2023;20:43–7.

  4. Oh SI, Jeon AB, Jung BY, Byun JW, Gottschalk M, Kim A, 
et al. Capsular serotypes, virulence-associated genes and 
antimicrobial susceptibility of Streptococcus suis isolates from 
pigs in Korea. J Vet Med Sci. 2017;79:780–7. https://doi.org/ 
10.1292/jvms.16-0514

  5. Baek SH, Choi SK, Ryu J, Lee SH. Subdural empyema treated 
by continuous irrigation and drainage catheter insertion in a 
young adult patient with hemiparesis: a case report. Nerve. 
2017;3:85–8.

  6. Okwumabua O, O’Connor M, Shull E. A polymerase chain 
reaction (PCR) assay specific for Streptococcus suis based  
on the gene encoding the glutamate dehydrogenase. FEMS 
Microbiol Lett. 2003;218:79–84. https://doi.org/10.1111/ 
j.1574-6968.2003.tb11501.x

  7. Liu Z, Zheng H, Gottschalk M, Bai X, Lan R, Ji S, et al.  
Development of multiplex PCR assays for the identification  
of the 33 serotypes of Streptococcus suis. PLoS One. 
2013;8:e72070. https://doi.org/10.1371/journal.
pone.0072070

618 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 3, March 2024

RESEARCH LETTERS

Figure 2. Detection of Streptococcus suis in a patient with 
Streptococcus suis infection, Jeju Island, South Korea, performed 
by using PCR with specific primers for gdh and thrA. Size marker, 
1 kb DNA ladder (LugenSci, https://www.lugensci.com). Lane 1, 
blood culture, DNA from patient’s blood culture; lane 2, subdural 
empyema, DNA from patient’s subdural pus; lane 3, positive 
control, DNA from previously isolated S. suis stock; lane 4, 
negative control, no template PCR condition.
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Highly pathogenic avian influenza viruses 
(HPAIVs) have caused substantial economic 

losses in the poultry industry and potentially threat-
en public health. Since its first identification in 1996, 
H5Nx HPAIVs, Gs/GD lineage, have evolved into 
multiple genotypes through reassortment across de-
cades (1–3).

In late 2020, novel reassortant clade 2.3.4.4b 
H5N1 HPAIVs emerged and became predominant in 
Europe (1). The first detection of clade 2.3.4.4 b H5N1 
viruses in North America occurred through trans-
atlantic spread via wild birds in late 2021 (2). From 
late 2021 to early 2022, multiple reassortant viruses 
have been naturally generated by recombination with 
North American low pathogenicity avian influenza 
virus (LPAIV) internal genes. In late October 2022, 
South America countries including Argentina, Bo-
livia, Brazil, Chile, Colombia, Ecuador, Paraguay, 
Peru, Uruguay, and Venezuela reported clade 2.3.4.4 
b H5N1 HPAIV detection in domestic and wild birds 
(3,4). Human infections were also reported for the 
first time in South America (3,5). We report 4 clade 
2.3.4.4b H5N1 HPAIVs sequenced from wild bird car-
casses collected in Brazil in June 2023. 

In June 2023, we collected swab samples from 
Royal terns (Thalasseus maximus) and Cabot’s terns (Thal-
asseus acuflavidus) in Brazil, from which we detected 
and sequenced 4 H5N1 HPAIVs: A/Thalasseus_maxi-
mus/Brazil-ES/23ES1A0008/2023 (TM/BR08/23), A/
Thalasseus_acuflavidus/Brazil-ES/23ES1A0009/2023 
(TA/BR09/23), A/Thalasseus acuflavidus/Brazil-
ES/23ES1A0025/2023 (TA/BR25/23), and A/Thal-
asseus maximus/Brazil-ES/23ES1A0026/2023 (TM/
BR26/23) (Appendix 1, https://wwwnc.cdc.gov/EID/
article/30/3/23-1157-App1.pdf). We obtained complete 
genome sequences for TM/BR08/23 and TM/BR09/23 
and partial sequences for TA/BR25/23 and TM/BR26/23 
(GISIAD [https://www.gisaid.org] accession nos. EPI_
ISL_18130597, EPI_ISL_18130622, EPI_ISL_18130627, 
and EPI_ISL_18130628) (Appendix 1 Table 1).

All H5N1 isolates possessed polybasic amino 
acid sequences at the hemagglutinin (HA) cleav-
age site (PLREKRKKR/GLF). The isolates shared 
high sequence identities (99.59%–100%) across all 8 
genes. BLAST search (https://blast.ncbi.nlm.nih.gov) 
showed all 8 genes shared high identities (99.59%–
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We report 4 highly pathogenic avian influenza A(H5N1) 
clade 2.3.4.4.b viruses in samples collected during June 
2023 from Royal terns and Cabot’s terns in Brazil. Phylo-
dynamic analysis revealed viral movement from Peru to 
Brazil, indicating a concerning spread of this clade along 
the Atlantic Americas migratory bird flyway.

1These authors contributed equally to this article.



100%) to the recent H5N1 HPAIVs isolated from 
samples obtained in Chile and other South American 
countries. Using maximumplikelihood phylogenies, 
we noted that all internal genes (polymerase basic [PB] 
2, PB1, polymerase acidic [PA], nucleoprotein [NP], 
matrix [M], nonstructural [NS]) clustered with the 
B3.2 genotype, a reassortant genotype identified in the 
United States in early 2022. The B3.2 genotype compris-
es North America–origin PB2, PB1, NP, and NS and 
Eurasia–origin PA, HA, NA, and M. We observed no 
evidence of reassortment, indicating the viruses were 
direct descendants of genotype B3.2 (Appendix 1 Fig-
ure 1) (6). Bayesian phylogeny of the HA gene revealed 
the H5N1 viruses from Brazil formed a well-supported 
cluster. We estimated the time to most recent ancestor 
to be May 13, 2023 (95% highest posterior density April 
15, 2023–June 10, 2023), suggesting the H5N1 HPAIVs 
emerged ≈1 month before the detection in the carcasses 
of wild terns (Figure).

We estimated the incursion of genotype B3.2 into 
South America to be around August 14, 2022 (95% high-
est posterior density July 3, 2022–September 21 2022). 
Discrete trait analysis of geographic location suggested 
the source of H5N1 HPAIV was from North America, 
with frequently observed viral movement from Peru to 

Chile (Figure). The viral transition from Chile to Brazil 
was highly supported. However, the long branch be-
tween the two countries suggests a lack of data to be 
filled (Figure; Appendix 1 Tables 2, 3). Discrete trait anal-
ysis after minimizing the sampling bias showed similar 
results to the initial analysis (Appendix 1 Figure 2).

We evaluated mammalian molecular markers by 
using the H5N1 HPAIVs and the human virus from 
Chile (A/Chile/25945/2023) (5). The HA protein se-
quences of the H5N1 HPAIVs had amino acids relat-
ed to those with a binding affinity to avian-like (α-
2,3 sialic acid) receptors (188T, 210A, 222Q, and 224G 
in H5 numbering) (7,8). The HA protein sequences 
had 3 minor substitutions associated with increased 
binding affinity of the HA receptor to a human-like 
receptor (α-2,6 sialic acid) (S123P, S133A, and T156A 
in HA) (Appendix 1 Table 4). All isolates exhibited 
L89V, K389R, and V598T in PB2; N30D, I43M, and 
T215A in M; and P42S and ESEV PDZ binding mo-
tif mutations in NS, known to increase virulence in 
mice. The Chilean virus harbored more amino acid 
substitutions known to be associated with increased 
viral replication in mammals, including Q591K and 
D701N in PB2, A515T in PA, and L98F and I101M in 
NS (Appendix 1 Table 4).
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Figure. Maximum clade credibility phylogenetic tree of hemagglutinin gene based on discrete trait analysis of geographic location of wild 
bird carcasses identified as harboring highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus, Brazil, 2023. The time scale is 
shown on the horizontal axis. Each branch is colored according to geographic region.



The reassortment of H5Nx clade 2.3.4.4b 
HPAIVs, containing segments from both HPAIVs 
and LPAIVs, created a diverse genetic pool of H5 
clade 2.3.4.4 that is continuously emerging in various 
countries (9). Novel reassortment of Eurasian clade 
2.3.4.4 HPAIV with North America LPAIVs was 
reported in 2014–2015 and 2022–2023 (6,10). South 
America has been largely unaffected by the HPAIV 
epizootic in the past decade, but more countries are 
reporting HPAIV since its first detection in October 
2022. Royal terns and Cabot’s terns are mainly coast-
al birds, staying on shore areas all year (P. Yorio 
et al., unpub. data, https://doi.org/10.1675/1524-
4695-31.4.561). The terns are known to use the At-
lantic Americas Flyway and move along the coast, 
which raises concern for the spread of H5N1 HPAIV 
in this region. The unprecedented global distribu-
tion and continuous generation of novel reassortant 
clade 2.3.4.4b HPAI H5Nx viruses call for height-
ened monitoring of HPAIV movement and reassort-
ment to improve prevention and control policies.
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The COVID-19 pandemic has caused major hu-
man and social behavior changes. Human coro-

navirus (HCoV) OC43, a common human coronavi-
rus, remains a major cause of respiratory infections. 
HCoV-OC43 can infect humans at any age, causing 
lower respiratory tract infections that can be severe in 
patients who have concurrent conditions (1,2). Until 
May 2023, a total of 2,533 patients were hospitalized 
with COVID-19 at Hospital São Paulo (São Paulo, 
Brazil). We report an unexpected HCoV-OC43 infec-
tion outbreak among patients and healthcare workers 
at Hospital São Paulo. We conducted this observa-
tional study in compliance with institutional guide-
lines and approval by the Ethics Committee of Uni-
versidade Federal de São Paulo (CEP/UNIFESP no. 
29407720.4.00 00.5505). 

During March–June 2023 (fall season), we col-
lected swab specimens from patients and screened 
those specimens for influenza A/B virus, respira-
tory syncytial virus, SARS-CoV-2, and HCoV in the 
laboratory at our hospital as a routine surveillance 

method used since 2020. We evaluated samples from 
927 persons who had acute respiratory infections: 446 
hospitalized patients and 481 healthcare workers. We 
detected HCoV by using multiplex real-time PCR 
with specific primers and probes for HCoV-OC43, 
HCoV-229E, HCoV-40 HKU-1, and HCoV-NL63 (3,4). 
Among tested samples, 7.7% (71/927) were positive 
for HCoV: 10.6% (51/481) for healthcare workers and 
4.5% (20/446) for hospitalized patients (Table).

Of the 71 HCoV-positive samples, 28.2% (20/71) 
were obtained from hospitalized patients (mean 
age 34.5 years; interquartile range 6–64 years) and 
71.8% (51/71) from healthcare workers (mean age 
41.9 years; interquartile range 32–52 years). Among 
healthcare workers, 46 (90.2%) samples were posi-
tive for HCoV-OC43, 4 (7.8%) for HCoV-NL63, and 
1 (2%) for HCoV-229E. Among hospitalized patients, 
16 (80%) patients were positive for OC43, 3 (15%) 
for NL63, and 1 (5%) for HKU-1. Co-infections were 
identified in only 4 (5.6%) case-patients: 1 patient had 
both HCoV-NL63 and SARS-CoV2, 1 patient had 
both HCoV-OC43 and respiratory syncytial virus, 
and 2 patients each had both HCoV-OC43 and influ-
enza A(H1N1)pdm09 virus.

All 16 inpatients who had HCoV-OC43 had risk 
factors for more severe illness, such as immunosup-
pression (3 patients) and underlying conditions (8 pa-
tients); 5 (31.2%) patients had both. Two (2/16; 12.5%) 
immunosuppressed patients required admission to 
an intensive care unit and died (1 child, 1 adult).

Radiologic images were obtained for 14 of 16 in-
patients who had HCoV-OC43, and 62.5% (10/16) 
had an alteration detected by chest computed tomog-
raphy. Radiologic findings included lung opacities, 
bilateral interstitial infiltrate, consolidations, and cen-
trilobular micronodules with a unifocal or multifocal 
ground glass pattern, all of which were predominant-
ly distributed within the lower lobes.

A probable nosocomial acquisition might have 
occurred because the infection rate among health-
care workers peaked earlier (May) than the observed 
inpatient peak rate (June) (Table). Five (31.2%) inpa-
tients who had HCoV-OC43–positive samples were 
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We report a human coronavirus OC43 infection outbreak 
in hospitalized patients and healthcare workers in São 
Paulo, Brazil, occurring after SARS-CoV-2 cases disap-
peared. Infection was associated with healthcare work-
ers in 5 (29.4%) patients. Routine surveillance including 
a respiratory virus panel can improve coronavirus detec-
tion in both healthcare professionals and patients.

 
Table. HCoV-positive case-patients by month, age, and participant groups during the betacoronavirus infection outbreak in Hospital 
São Paulo, São Paulo, Brazil, March–June 2023* 
Characteristic Total Hospitalized patients Healthcare workers 
Total 71/927 (7.7) 20/446 (4.5) 51/481 (10.6) 
March 4/295 (1.3) 2/128 (1.6) 2/167 (1.2) 
April 5/195 (2.6) 2/104 (1.9) 3/91 (3.3) 
May 28/218 (12.8) 4/102 (3.9) 24/116 (20.7) 
June 34/219 (15.5) 12/112 (10.7) 22/107 (20.6) 
Adults (>12 y old) 63/813 (7.7) 12/332 (3.6) 51/481 (10.6) 
Children 8/114 (7.0) 8/114 (7.0) NA 
*Values are no. positive/no. tested (%). HCoV, human coronavirus; NA, not applicable. 

 



housed within different wards several days after ad-
mission; thus, it was possible to confirm nosocomial 
acquisition. In those cases, HCoV-OC43 transmission 
took place within inpatient wards, specifically during 
activities involving direct contact with a healthcare 
worker. Contact tracing connected patient cases to in-
teractions with healthcare workers.

The SARS-CoV-2 positivity rate during the out-
break period (March–June) varied from 7.3% to 27.9% 
(Figure); no cases were reported in June. To provide 
background for the outbreak, we conducted sur-
veillance testing for respiratory viruses collected 2 
months before (January–February) and after (July–
August) the outbreak; no HCoV was detected during 
those periods. In previous studies conducted at our 
hospital before the COVID-19 pandemic, we did not 
observe >5% monthly circulation of HCoVs during 
the study years under investigation (5). The HCoV-
OC43 outbreak peak occurred after the disappear-
ance of SARS-CoV-2 cases (Figure).

In this outbreak, hospitalized patients showed evo-
lution of a severe form of infection caused by HCoV-
OC43. Nirmatrelvir/ritonavir is a promising antiviral 
drug combination in preclinical studies that inhibits 
the proteolytic activity of SARS-CoV-2 Mpro, a cysteine 
protease found in the family Coronaviridae (6), and 
might be useful for treating HCoV-OC43 infections.

At the end of March 2023 in Brazil, the National 
Health Surveillance Agency (Agência Nacional de 
Vigilância Sanitária) updated guidelines for mask 
use in healthcare settings. Since April 2023, the hos-
pital committee has relaxed the requirement for 

universal mask use, making them obligatory only 
in areas designated for patient care (7). Relaxing 
mask use by healthcare workers who provide care to 
high-risk patients likely contributed to nosocomial 
acquisition of HCoV-OC43. Furthermore, healthcare 
workers who had respiratory infections other than 
SARS-CoV-2 infections were likely less vigilant in 
using personal protective equipment during patient 
care. In addition, an unconscious relaxation in main-
taining precautions might have occurred, possibly 
because persons did not perceive themselves as po-
tential transmitters.

In conclusion, we report the occurrence of HCoV-
OC43 causing severe acute respiratory infection that 
might be underestimated because of a lack of better 
diagnostic approaches for viral respiratory infections, 
particularly in high-risk patients. Routine surveil-
lance using a diagnostic panel of respiratory viruses 
can improve detection in both healthcare workers 
and patients and can help determine prevalence and 
prevent transmission of different viruses.
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The French chemist and
microbiologist Louis Pas-

teur famously stated that 
“in the fields of observa-
tion, chance favors only the 
prepared mind.” How bet-
ter then to be prepared for a 
journey into the challenging 
and often perplexing world 
of clinical mycology than 
with a copy of Larone’s Medi-
cally Important Fungi in hand? 
Composed with the needs of 
the medical mycology technician in mind (which, for-
tunately, translate equally well to the needs of labo-
ratorians, physicians, and trainees alike) and written 
in the style of a field guide to identification, Larone’s 
guide serves as an easily accessible yet surprisingly 
granular compendium of medically important fungi.

 As stated in the book’s preface, this manual 
does not include an exhaustive account of the epi-
demiology, pathophysiology, diagnosis, and thera-
peutics for each fungal pathogen, nor is it designed 
to replace more comprehensive mycology text-
books. There are other well-known and exhaustive 
references for that. The aim of this guidebook is to 
help provide a rapid preliminary diagnosis within 
the trenches of the microbiology laboratory, based 
only on the colony and microscopic morphology of 
a cultured organism or, at times, its morphology on 
direct stains. 

In keeping with this purpose, this newest (7th) 
edition’s format adheres to an ergonomic design, 
with a color-coded layout that increases its usabil-
ity in real time. The book begins with a Basics sec-
tion to orient readers on how to wield the guide 
and ends with a highly useful image appendix and 
glossary of commonly used, but sometimes nebu-
lous, terms (e.g., blastoconidium, the technical term 
for a unicellular yeast). The Basics section begins 
ominously, by cautioning that readers “should  

understand several points” before using the guide; 
such counsel is justified, given that the practice of 
fungi identification in the medical setting is highly 
nuanced and requires strict adherence to standard 
laboratory procedures of quality and safety for fa-
vorable results. The meat of the matter lies in the 
middle of the book, which features 4 core sections 
on direct identification of fungi from clinical speci-
mens, identification of fungi from cultured isolates, 
basics of molecular methods of fungal identifica-
tion, and laboratory techniques. The first 2 sections 
stand out as outstanding compendia of clinically 
important fungi, with pithy descriptions of each 
pathogen, its taxonomy, pathogenicity, site of in-
fection, accompanying tissue reactions, and micro-
scopic and colony morphologies. Each fungi dis-
cussion is accompanied by a hand-drawn sketch of 
the organism’s distinct morphology alongside one 
or more representative photomicrographs. Many of 
the photos are in color, but a large number are un-
fortunately monochrome, making them less visual-
ly appealing and rendering the depicted structures 
harder to discern. A full-color image appendix par-
tially makes up for this concern. 

Importantly, most organisms are arranged ac-
cording to their morphological similarities rather 
than alphabetically to make comparisons between 
similarly appearing structures easier. This categoriza-
tion works well with the included discussion of non-
fungal pathogens (e.g., actinomycetes and Prototheca), 
which closely resemble fungi microscopically.

One of the reasons Larone’s guide is such an 
effective mycology handbook is because it takes 
nothing for granted. Replete with explanations of 
basic histological terms, ranging from abscess to 
Splendore-Hoeppli phenomenon, and descriptions 
of fundamental tissue reactions to fungal infection 
(e.g., granulomatous inflammation)—all comple-
mented by helpful summary tables and explana-
tory figures—the book achieves the remarkable feat 
of being simultaneously concise and complete. Al-
though the emphasis is on usability, readers will 
enjoy the breadth of information provided. The 
book is well edited, and the newest edition now in-
cludes information on emerging pathogens, such as 
Emergomyces and Emmonsia species.

Larone’s guide is not meant to be the sort of book 
one peruses cover to cover nor the subject of a leisurely 
read, but the kind of book that is never far away from 
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the bench, the microscope, or the office. It appeals to all 
levels of expertise—from mycologists-in-training to sea-
soned experts and from academic to commercial labo-
ratories—because it provides the actionable informa-
tion needed to make a diagnosis. I was gifted a copy of 
an earlier edition as a budding clinical mycologist and 
have since reached for it countless times. Joining the 
pantheon of revered medical tomes is no small feat, yet 
Larone’s guide successful formula has enabled it to ac-
complish just that.
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Paulina Siniatkina, an artist and activist, is a survi-
vor of tuberculosis (TB). In 2015, in a TB hospital 

on the outskirts of Moscow, the treating physician 
advised her to never talk about her TB diagnosis to 
anyone—further reinforcing the longstanding stigma 
associated with the disease. During her 7 months of 

treatment in isolation, Paulina experienced firsthand 
the suffering and loss associated with TB and turned 
to art to express her emotions and frustrations. She 
now uses her artistic talent and personal experience to 
advocate in the global fight against TB, and her work 
has drawn international recognition by the American 
Medical Association and World Health Organiza-
tion. This month’s cover image, Don’t speak!, by Ms. 
Siniatkina, exemplifies the poignant psychology as-
sociated with TB. At the center, a young woman with 
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sullen eyes draws your attention with her gaze, using 
a silent expression of longing to tell her story from 
behind the mask. Her unspoken feelings of hopeless-
ness and depression appear to be subtly calmed by 
her nervous plucking of white petals from the single 
daisy protected by her hand, as the surrounding com-
munity dissolves into the background with looks of 
fear and judgement.

TB remains one of the leading causes of death by 
an infectious disease agent. Each year, more than 10 
million people suffer from TB, and 1.5 million die as a 
result. Although curable, TB is a chronic multisystem 
infectious disease with well-documented, and often 
life-changing, disability and reduced quality of life. 
Treatment requires a multidrug, multimonth course 
of antibiotics; drug-resistant forms of TB extend the 
duration of treatment and in many communities re-
quire the patient to spend months in hospital or re-
spiratory isolation. Not surprisingly, an estimated 
40%–70% of persons treated for TB experience clinical 
anxiety or depression.

Beyond stigma and social isolation, mental ill-
ness persists as a silent driver of the global TB epi-
demic. Mental illness is associated with acquired 
drug resistance, TB transmission, disease recurrence, 
and TB-related death. Mental illness and TB are often 
exacerbated by homelessness and HIV co-infection. 
Integrated services for persons with TB and concur-
rent psychiatric conditions such as addiction, anxiety, 
or depression are now considered an essential com-
ponent of global TB elimination efforts. However, in 
many countries with high burdens of TB, access to 
psychiatric services, including routine mental health 
screening and treatments, remain extremely limited.

Each year on March 24, we commemorate World 
TB Day in honor of the day Robert Koch announced 
to the Berlin Physiologic Society that he had discov-
ered the cause of tuberculosis. World TB Day is a 
time to remember the millions of persons who suffer 
from TB, often in silence. It is also a time to break 
the silence, raise greater awareness, take specific ac-
tions to reduce the impact of mental health on our 
ambitions for global TB elimination, and not hold our 
breath in isolation.
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Article Title

Molecular Epidemiology of Underreported Emerging  
Zoonotic Pathogen Streptococcus suis in Europe

CME Questions
1.  Streptococcus suis is endemic in which of the 
following countries?
A. Vietnam and Thailand
B. Germany and Spain
C. Tanzania and Kenya
D. Ecuador and Colombia

2.  Which serotype of S. suis is associated with the 
greatest proportion of zoonotic infections historically 
as well as in the current study?
A. Serotype 2
B. Serotype 4
C. Serotype 7
D. Serotype 9

3.  What was the main clinical syndrome associated 
with S. suis infections in the current study?

A. Endocarditis
B. Sepsis
C. Enteritis
D. Meningitis

4.  Which of the following statements regarding 
genetic characteristics of S. suis isolates in the 
current study is most accurate?
A. Most strains were part of the major zoonotic clade CC20
B. Strains from clades CC1 and CC20 had more 

accessory genes overrepresented in zoonotic isolates
C. All pathogenic clades featured the sly, mrp, and 

fhb genes
D. Overrepresented genes generally increased 

zoonotic potential
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CME Questions
1.  Which of the following statements regarding 
disseminated leishmaniasis (DL) is most accurate?
A. DL is defined by lesions in ≥ 4 anatomic locations
B. The prevalence of DL has increased > 20-fold in the

 past 30 years
C. DL is generally caused only by Leishmania

amazonensis
D. DL is characterized by a high number of parasites in 

situ in lesions

2.  What were the respective rates of clinical cure 
of leishmaniasis associated with one course 
of meglumine antimoniate (MA) for cutaneous 
leishmaniasis (CL) and DL in the current study?
A. 91% for CL; 84% for DL
B. 78% for CL; 82% for DL
C. 60% for CL; 44% for DL
D. 35% for CL; 31% for DL

3.  Which of the following variables is most 
significantly associated with a higher risk of more than 
50 lesions of DL (DL > 50) vs less than 40 lesions of DL 
(DL < 40) in the current study?
A. Longer duration between appearance of the first 

lesion and dissemination
B. Older age
C. Longer duration of illness
D. Higher rates of mucosal disease

4.  Which of the following statements regarding 
treatment with amphotericin B, miltefosine, or 
miltefosine plus MA in the current study is  
most accurate?
A. The number of lesions was highest in the miltefosine-

plus-MA cohort
B. Miltefosine plus MA was associated with the fastest

 mean healing time
C. Amphotericin B was associated with the highest 

cure rate
D. No treatment group had a superior cure rate vs 

MA alone
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