Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 4—April 2007
Letter

Transfusion-associated Hepatitis E, France

Philippe Colson*†Comments to Author , Carole Coze*, Pierre Gallian†‡, Mireille Henry*†, Philippe de Micco†‡, and Catherine Tamalet*†
Author affiliations: *Centre Hospitalier Régional Universitaire, Timone, Marseille, France; †Université de la Méditerranée, Marseille, France; ‡Etablissement Français du Sang Alpes–Mediterranée, Marseille, France;

Main Article

Figure

Outline of phylogenetic tree (complete figure available online, http://www.cdc.gov/EID/13/4/zzz-T.htm) constructed by the neighbor-joining method on the basis of partial nucleotide sequences of the open reading frame (ORF) 2 region of hepatitis E virus (HEV) genome obtained from the blood donor and the blood recipient, with sequences of other local HEV strains previously identified, and published HEV sequences. Local HEV sequences were obtained after reverse transcription–PCR amplification that used SuperScript One-Step RT-PCR System (Invitrogen Life Technologies with in-house protocols that used outer primers HevMrsFwd1: 5’-AATTATGCYCAGTAYCGRGTT-3’, 5663 nt (primer location is defined in reference to GenBank sequence accession no. NC_001434); HevMrsRev1: 5′-CCTTTRTCYTGCTGRGCATTCTC-3’, 6393, then inner primers HEVMrsFwd2 5’-GTWATGCTYTGCATACATGGCT-3’, 5,948 and HevMrs2Rev2: 5’-AGCCGACGAAATCAATTCTGT-3’, 6,295, to obtain a fragment of 347 bp. PCR fragments were purified then directly sequenced by using the inner primers and the Big Dye Terminator cycle sequencing kit version 1.1 on ABI Prism 3130 genetic analyzer (Applied Biosystems, Branchburg, NJ, USA). HEV genotype was determined by using phylogenetic analysis with a set of published HEV sequences (genotype and subtype are indicated with the GenBank accession no.) (8). Bootstrap values are indicated when >50% as a percentage obtained from 100 resamplings of the data. HEV sequences from the blood donor and recipient (indicated by black squares) have been submitted to GenBank (accession nos. EF028801 and EF028802); white squares indicate HEV sequences from other individuals with hepatitis E living in Marseille and its geographic area. Black inverted triangles indicate sequences involved in transfusion-transmitted hepatitis E cases in Japan (Japan A [9]); white inverted triangles indicate other Japanese HEV sequences from the same geographic area (Japan A [9]). White triangles indicate HEV sequences from the United Kingdom (3) that have an 80%–100% homology at the nucleotide level with those obtained by Boxall et al. (7). White circles indicate sequences from patients living in Hokkaido, Japan (Japan B; [8]); ORF 1 sequences from these strains were very similar to those characterized in a transfusion-transmitted hepatitis E case that occurred in Hokkaido.

Figure. Outline of phylogenetic tree (complete figure available online, http://www.cdc.gov/EID/13/4/zzz-T.htm) constructed by the neighbor-joining method on the basis of partial nucleotide sequences of the open reading frame (ORF) 2 region of hepatitis E virus (HEV) genome obtained from the blood donor and the blood recipient, with sequences of other local HEV strains previously identified, and published HEV sequences. Local HEV sequences were obtained after reverse transcription–PCR amplification that used SuperScript One-Step RT-PCR System (Invitrogen Life Technologies with in-house protocols that used outer primers HevMrsFwd1: 5’-AATTATGCYCAGTAYCGRGTT-3’, 5663 nt (primer location is defined in reference to GenBank sequence accession no. NC_001434); HevMrsRev1: 5′-CCTTTRTCYTGCTGRGCATTCTC-3’, 6393, then inner primers HEVMrsFwd2 5’-GTWATGCTYTGCATACATGGCT-3’, 5,948 and HevMrs2Rev2: 5’-AGCCGACGAAATCAATTCTGT-3’, 6,295, to obtain a fragment of 347 bp. PCR fragments were purified then directly sequenced by using the inner primers and the Big Dye Terminator cycle sequencing kit version 1.1 on ABI Prism 3130 genetic analyzer (Applied Biosystems, Branchburg, NJ, USA). HEV genotype was determined by using phylogenetic analysis with a set of published HEV sequences (genotype and subtype are indicated with the GenBank accession no.) (8). Bootstrap values are indicated when >50% as a percentage obtained from 100 resamplings of the data. HEV sequences from the blood donor and recipient (indicated by black squares) have been submitted to GenBank (accession nos. EF028801 and EF028802); white squares indicate HEV sequences from other individuals with hepatitis E living in Marseille and its geographic area. Black inverted triangles indicate sequences involved in transfusion-transmitted hepatitis E cases in Japan (Japan A [9]); white inverted triangles indicate other Japanese HEV sequences from the same geographic area (Japan A [9]). White triangles indicate HEV sequences from the United Kingdom (3) that have an 80%–100% homology at the nucleotide level with those obtained by Boxall et al. (7). White circles indicate sequences from patients living in Hokkaido, Japan (Japan B; [8]); ORF 1 sequences from these strains were very similar to those characterized in a transfusion-transmitted hepatitis E case that occurred in Hokkaido.

Main Article

References
  1. Worm  HC, van der Poel  WH, Brandstatter  G. Hepatitis E: an overview. Microbes Infect. 2002;4:65766. DOIPubMedGoogle Scholar
  2. Peron  JM, Mansuy  JM, Poirson  H, Bureau  C, Dupuis  E, Alric  L, Hepatitis E is an autochthonous disease in industrialized countries. Analysis of 23 patients in South-West France over a 13-month period and comparison with hepatitis A. Gastroenterol Clin Biol. 2006;30:75762. DOIPubMedGoogle Scholar
  3. Ijaz  S, Arnold  E, Banks  M, Bendall  RP, Cramp  ME, Cunningham  R, Non-travel–associated hepatitis E in England and Wales: demographic, clinical, and molecular epidemiological characteristics. J Infect Dis. 2005;192:116672. DOIPubMedGoogle Scholar
  4. Li  TC, Chijiwa  K, Sera  N, Ishibashi  T, Etoh  Y, Shinohara  Y, Hepatitis E virus transmission from wild boar meat. Emerg Infect Dis. 2005;11:195860.PubMedGoogle Scholar
  5. Arankalle  VA, Chobe  LP. Hepatitis E virus: can it be transmitted parenterally? J Viral Hepat. 1999;6:1614. DOIPubMedGoogle Scholar
  6. Psichogiou  MA, Tassopoulos  NC, Papatheodoridis  GV, Tzala  E, Klarmann  R, Witteler  H, Hepatitis E virus infection in a cohort of patients with acute non-A, non-B hepatitis. J Hepatol. 1995;23:66873. DOIPubMedGoogle Scholar
  7. Boxall  E, Herborn  A, Kochethu  G, Pratt  G, Adams  D, Ijaz  S, Transfusion-transmitted hepatitis E in a ‘nonhyperendemic’ country. Transfus Med. 2006;16:7983. DOIPubMedGoogle Scholar
  8. Lu  L, Li  C, Hagedorn  CH. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Rev Med Virol. 2006;16:536. DOIPubMedGoogle Scholar
  9. Mitsui  T, Tsukamoto  Y, Yamazaki  C, Masuko  K, Tsuda  F, Takahashi  M, Prevalence of hepatitis E virus infection among hemodialysis patients in Japan: evidence for infection with a genotype 3 HEV by blood transfusion. J Med Virol. 2004;74:56372. DOIPubMedGoogle Scholar
  10. Arora  NK, Nanda  SK, Gulati  S, Ansari  IH, Chawla  MK, Gupta  SD, Acute viral hepatitis types E, A, and B singly and in combination in acute liver failure in children in north India. J Med Virol. 1996;48:21521. DOIPubMedGoogle Scholar

Main Article

Page created: June 28, 2010
Page updated: June 28, 2010
Page reviewed: June 28, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external