Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 9—September 2009

Genetics and Pathogenesis of Feline Infectious Peritonitis Virus

Meredith A. BrownComments to Author , Jennifer L. Troyer, Jill Pecon-Slattery, Melody E. Roelke, and Stephen J. O’Brien
Author affiliations: National Cancer Institute, Frederick, Maryland, USA (M.A. Brown, J. Pecon-Slattery, S.J. O’Brien); SAIC-Frederick, Inc., Frederick (J.L. Troyer, M.E. Roelke)

Main Article

Figure 5

Diagram of membrane protein containing 3 transmembrane helices, an external N terminus and an internal carboxy terminus. Approximate position of 5 variable diagnostic amino acid sites (see Table 2) as determined by sequence comparison to severe acute respiratory syndrome coronavirus (32). Amino acid residue, polarity, and hydrophobicity or hydropholicity is stated.

Figure 5. Diagram of membrane protein containing 3 transmembrane helices, an external N terminus and an internal carboxy terminus. Approximate position of 5 variable diagnostic amino acid sites (see Table 2) as determined by sequence comparison to severe acute respiratory syndrome coronavirus (32). Amino acid residue, polarity, and hydrophobicity or hydropholicity is stated.

Main Article

  1. Addie  DD. Clustering of feline coronaviruses in multicat households. Vet J. 2000;159:89. DOIPubMedGoogle Scholar
  2. Addie  DD, Jarrett  O. A study of naturally occurring feline coronavirus infections in kittens. Vet Rec. 1992;130:1337.PubMedGoogle Scholar
  3. Kennedy  M, Citino  S, McNabb  AH, Moffatt  AS, Gertz  K, Kania  S. Detection of feline coronavirus in captive Felidae in the USA. J Vet Diagn Invest. 2002;14:5202.PubMedGoogle Scholar
  4. Pedersen  NC. A review of feline infectious peritonitis virus infection: 1963–2008. J Feline Med Surg. 2009;11:22558. DOIPubMedGoogle Scholar
  5. Foley  JE, Poland  A, Carlson  J, Pedersen  NC. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J Am Vet Med Assoc. 1997;210:13138.PubMedGoogle Scholar
  6. Pedersen  NC, Evermann  JF, McKeirnan  AJ, Ott  RL. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am J Vet Res. 1984;45:25805.PubMedGoogle Scholar
  7. de Groot  RJ. Feline infectous peritonitis. In: Siddell SG, editor. The Coronoviridae. New York: Plenum Press; 1995. p. 293–309.
  8. Weiss  RC, Scott  FW. Pathogenesis of feline infectious peritonitis: nature and development of viremia. Am J Vet Res. 1981;42:38290.PubMedGoogle Scholar
  9. Kipar  A, Kohler  K, Leukert  W, Reinacher  M. A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection. J Comp Pathol. 2001;125:18291. DOIPubMedGoogle Scholar
  10. Kipar  A, Meli  ML, Failing  K, Euler  T, Gomes-Keller  MA, Schwartz  D, Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet Immunol Immunopathol. 2006;112:14155. DOIPubMedGoogle Scholar
  11. Hunziker  L, Recher  M, Macpherson  AJ, Ciurea  A, Freigang  S, Hengartner  H, Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat Immunol. 2003;4:3439. DOIPubMedGoogle Scholar
  12. Poland  AM, Vennema  H, Foley  JE, Pedersen  NC. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol. 1996;34:31804.PubMedGoogle Scholar
  13. Vennema  H, Poland  A, Foley  J, Pedersen  NC. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology. 1998;243:1507. DOIPubMedGoogle Scholar
  14. Rottier  PJ, Nakamura  K, Schellen  P, Volders  H, Haijema  BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol. 2005;79:1412230. DOIPubMedGoogle Scholar
  15. Stoddart  CA, Scott  FW. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol. 1989;63:43640.PubMedGoogle Scholar
  16. Haijema  BJ, Volders  H, Rottier  PJ. Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol. 2003;77:452838. DOIPubMedGoogle Scholar
  17. Can-Sahna  K, Soydal Ataseven  V, Pinar  D, Oguzoglu  TC. The detection of feline coronaviruses in blood samples from cats by mRNA RT-PCR. J Feline Med Surg. 2007;9:36972. DOIPubMedGoogle Scholar
  18. Dye  C, Siddell  SG. Genomic RNA sequence of feline coronavirus strain FCoV C1Je. J Feline Med Surg. 2007;9:20213. DOIPubMedGoogle Scholar
  19. Hartley  O, Klasse  PJ, Sattentau  QJ, Moore  JP. V3: HIV's switch-hitter. AIDS Res Hum Retroviruses. 2005;21:17189. DOIPubMedGoogle Scholar
  20. Ballesteros  ML, Sanchez  CM, Enjuanes  L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology. 1997;227:37888. DOIPubMedGoogle Scholar
  21. Saif LJaS. K. Transmissible gastroenteritis virus and porcine respiratory coronavirus. In: Zimmerman JJ, editor. Diseases of swine. 9th ed. Ames (IA): Iowa State University Press; 2006. p. 489–516.
  22. Sanchez  CM, Izeta  A, Sanchez-Morgado  JM, Alonso  S, Sola  I, Balasch  M, Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol. 1999;73:760718.PubMedGoogle Scholar
  23. Mongkolsapaya  J, Dejnirattisai  W, Xu  XN, Vasanawathana  S, Tangthawornchaikul  N, Chairunsri  A, Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003;9:9217. DOIPubMedGoogle Scholar
  24. Anishchenko  M, Bowen  RA, Paessler  S, Austgen  L, Greene  IP, Weaver  SC. Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation. Proc Natl Acad Sci U S A. 2006;103:49949. DOIPubMedGoogle Scholar
  25. Thompson  JD, Gibson  TJ, Plewniak  F, Jeanmougin  F, Higgins  DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:487682. DOIPubMedGoogle Scholar
  26. Maddison DRaM. W.P. MacClade 3.05. Sunderland (MA): Sinauer; 1995.
  27. Swofford  DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland (MA): Sinauer; 2002.
  28. Posada  D, Crandall  KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:8178. DOIPubMedGoogle Scholar
  29. Kumar  S, Tamura  K, Nei  M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 2004;5:15063. DOIPubMedGoogle Scholar
  30. Pearks Wilkerson  AJ, Teeling  EC, Troyer  JL, Bar-Gal  GK, Roelke  M, Marker  L, Coronavirus outbreak in cheetahs: lessons for SARS. Curr Biol. 2004;14:R2278. DOIPubMedGoogle Scholar
  31. Rottier  PJ. The coronavirus membrane glycoprotein. In: Siddell SG, editor. The Coronaviridae. New York: Plenum Press; 1995. p. 115–40.
  32. He  Y, Zhou  Y, Siddiqui  P, Niu  J, Jiang  S. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J Clin Microbiol. 2005;43:371826. DOIPubMedGoogle Scholar
  33. Heeney  JL, Evermann  JF, McKeirnan  AJ, Marker-Kraus  L, Roelke  ME, Bush  M, Prevalence and implications of feline coronavirus infections of captive and free-ranging cheetahs (Acinonyx jubatus). J Virol. 1990;64:196472.PubMedGoogle Scholar
  34. Pontius  JU, Mullikin  JC, Smith  DR, Lindblad-Toh  K, Gnerre  S, Clamp  M, Initial sequence and comparative analysis of the cat genome. Genome Res. 2007;17:167589. DOIPubMedGoogle Scholar

Main Article

Page created: December 07, 2010
Page updated: December 07, 2010
Page reviewed: December 07, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.