Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 12—December 2016
Synopsis

Assessing the Epidemic Potential of RNA and DNA Viruses

Mark E.J. WoolhouseComments to Author , Liam Brierley, Chris McCaffery, and Sam Lycett
Author affiliations: University of Edinburgh, Edinburgh, UK

Main Article

Figure 4

Phylogenetic trees for simulated emerging infectious disease outbreaks caused by RNA and DNA viruses in a mixed population of 1,000 human and 5,000 nonhuman hosts. Trees were constructed by using a standard susceptible–infected–removed model (6). For each of 3 infection scenarios in nonhuman hosts (black lines), rare zoonotic transmission events (blue lines), human-to-human transmission (red lines), and human cases (red circles) are indicated. For the nonhuman population R0 = 2 throughout. Trans

Figure 4. Phylogenetic trees for simulated emerging infectious disease outbreaks caused by RNA and DNA viruses in a mixed population of 1,000 human and 5,000 nonhuman hosts. Trees were constructed by using a standard susceptible–infected–removed model (6). For each of 3 infection scenarios in nonhuman hosts (black lines), rare zoonotic transmission events (blue lines), human-to-human transmission (red lines), and human cases (red circles) are indicated. For the nonhuman population R0 = 2 throughout. Transmissibility within the human populations varies from A) spillover: no human−human transmission (R0 = 0); B) limited human−human transmission with R0 = 1; and C) epidemic spread within humans (R0>1). A maximum of 100 infections are randomly sampled from each population in each simulated outbreak.

Main Article

References
  1. Taylor  LH, Latham  SM, Woolhouse  ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:9839.DOIPubMedGoogle Scholar
  2. Jones  KE, Patel  NG, Levy  MA, Storeygard  A, Balk  D, Gittleman  JL, Global trends in emerging infectious diseases. Nature. 2008;451:9903.DOIPubMedGoogle Scholar
  3. Morse  SS, Mazet  JA, Woolhouse  M, Parrish  CR, Carroll  D, Karesh  WB, Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380:195665.DOIPubMedGoogle Scholar
  4. King  AM, Lefkowitz  E, Adams  MJ, Carstens  EB. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Amsterdam: Elsevier; 2012.
  5. Woolhouse  ME, Haydon  DT, Antia  R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol Evol. 2005;20:23844.DOIPubMedGoogle Scholar
  6. Anderson  RM, May  RM. Infectious diseases of humans: dynamics and control. New York: Oxford University Press; 1991.
  7. Hay  SI, Battle  KE, Pigott  DM, Smith  DL, Moyes  CL, Bhatt  S, Global mapping of infectious disease. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120250.DOIPubMedGoogle Scholar
  8. Woolhouse  ME. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 2002;10(Suppl):S37.DOIPubMedGoogle Scholar
  9. Wolfe  ND, Dunavan  CP, Diamond  J. Origins of major human infectious diseases. Nature. 2007;447:27983.DOIPubMedGoogle Scholar
  10. J Woolhouse  ME, Adair  K, Brierley  L. RNA viruses: a case study of the biology of emerging infectious diseases. Microbiol Spectr. 2013;1:OH-00012012.DOIPubMedGoogle Scholar
  11. Woolhouse  ME, Adair  K. The diversity of human RNA viruses. Future Virol. 2013;8:15971 .DOIGoogle Scholar
  12. Kuiken  T, Holmes  EC, McCauley  J, Rimmelzwaan  GF, Williams  CS, Grenfell  BT. Host species barriers to influenza virus infections. Science. 2006;312:3947.DOIPubMedGoogle Scholar
  13. Davies  TJ, Pedersen  AB. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc Biol Sci. 2008;275:1695701.DOIPubMedGoogle Scholar
  14. Cooper  N, Nunn  CL. 2013 Identifying future zoonotic disease threats. Evol Med Public Health. 2013;1:2736.DOIPubMedGoogle Scholar
  15. Khabbaz  RF, Heneine  W, George  JR, Parekh  B, Rowe  T, Woods  T, Brief report: infection of a laboratory worker with simian immunodeficiency virus. N Engl J Med. 1994;330:1727.DOIPubMedGoogle Scholar
  16. Sharp  PM, Hahn  BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1:a006841.DOIPubMedGoogle Scholar
  17. Chowell  G, Hengartner  NW, Castillo-Chavez  C, Fenimore  PW, Hyman  JM. The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol. 2004;229:11926.DOIPubMedGoogle Scholar
  18. Schwartz  O, Albert  ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8:491500.DOIPubMedGoogle Scholar
  19. Fauci  AS, Morens  DM. Zika virus in the Americas: yet another arbovirus threat. N Engl J Med. 2016;374:6014.DOIPubMedGoogle Scholar
  20. Blumberg  S, Lloyd-Smith  JO. Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains. PLoS Comput Biol. 2013;9:e1002993.DOIPubMedGoogle Scholar
  21. Lord  CC, Barnard  B, Day  K, Hargrove  JW, McNamara  JJ, Paul  RE, Aggregation and distribution of strains in microparasites. Philos Trans R Soc Lond B Biol Sci. 1999;354:799807.DOIPubMedGoogle Scholar
  22. Yates  A, Antia  R, Regoes  RR. How do pathogen evolution and host heterogeneity interact in disease emergence? Proc Biol Sci. 2006;273:307583.DOIPubMedGoogle Scholar
  23. Jansen  VA, Stollenwerk  N, Jensen  HJ, Ramsay  ME, Edmunds  WJ, Rhodes  CJ. Measles outbreaks in a population with declining vaccine uptake. Science. 2003;301:804.DOIPubMedGoogle Scholar
  24. Woolhouse  ME, Gaunt  E. Ecological origins of novel human pathogens. In: Relman DA, Hamburg MA, Choffnes ER, Mack A, editors. Microbial evolution and co-adaptation, Washington (DC): National Academies Press; 2009. p. 208–29.
  25. Breban  R, Riou  J, Fontanet  A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet. 2013;382:6949.DOIPubMedGoogle Scholar
  26. Fine  PE, Jezek  Z, Grab  B, Dixon  H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17:64350.DOIPubMedGoogle Scholar
  27. Centers for Disease Control and Prevention. Outbreaks chronology: Ebola virus disease [cited 2015 Feb 1]. http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html#modalIdString_outbreaks
  28. Woolhouse  M, Antia  R. Emergence of new infectious diseases. In: Stearns SC, Koella JK, editors. Evolution in health and disease. 2nd ed. Oxford (UK): Oxford University Press; 2008. p. 215–28.
  29. Domingo  E, Martínez-Salas  E, Sobrino  F, de la Torre  JC, Portela  A, Ortín  J, The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene. 1985;40:18.DOIPubMedGoogle Scholar
  30. Herfst  S, Schrauwen  EJ, Linster  M, Chutinimitkul  S, de Wit  E, Munster  VJ, Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336:153441.DOIPubMedGoogle Scholar
  31. Arinaminpathy  N, McLean  AR. Evolution and emergence of novel human infections. Proc Biol Sci. 2009;276:393743.DOIPubMedGoogle Scholar
  32. Cotten  M, Watson  SJ, Zumla  AI, Makhdoom  HQ, Palser  AL, Ong  SH, Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. MBio. 2014;5:e0106213.DOIPubMedGoogle Scholar
  33. Gire  SK, Goba  A, Andersen  KG, Sealfon  RS, Park  DJ, Kanneh  L, Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345:136972.DOIPubMedGoogle Scholar
  34. Jombart  T, Cori  A, Didelot  X, Cauchemez  S, Fraser  C, Ferguson  N. Bayesian reconstruction of disease outbreaks by combining epidemiologic and genomic data. PLoS Comput Biol. 2014;10:e1003457.DOIPubMedGoogle Scholar
  35. Volz  EM, Kosakovsky Pond  SL, Ward  MJ, Leigh Brown  AJ, Frost  SD. Phylodynamics of infectious disease epidemics. Genetics. 2009;183:142130.DOIPubMedGoogle Scholar
  36. Gao  R, Cao  B, Hu  Y, Feng  Z, Wang  D, Hu  W, Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368:188897.DOIPubMedGoogle Scholar
  37. Lam  TT, Wang  J, Shen  Y, Zhou  B, Duan  L, Cheung  CL, The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. 2013;502:2414.DOIPubMedGoogle Scholar
  38. World Health Organization. Blueprint for R&D preparedness and response to public health emergencies due to highly infectious pathogens, 2015 [cited 2016 Aug 21]. http://www.who.int/csr/research-and-development/meeting-report-prioritization.pdf?ua=1
  39. Belshaw  R, Gardner  A, Rambaut  A, Pybus  OG. Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol. 2008;23:18893.DOIPubMedGoogle Scholar
  40. Woolhouse  ME, Rambaut  A, Kellam  P. Lessons from Ebola: Improving infectious disease surveillance to inform outbreak management. Sci Transl Med. 2015;7:307rv5.DOIPubMedGoogle Scholar

Main Article

Page created: November 17, 2016
Page updated: November 17, 2016
Page reviewed: November 17, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external