Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 6—June 2020
Research

Multihost Transmission of Schistosoma mansoni in Senegal, 2015–2018

Stefano Catalano1, Elsa Léger1Comments to Author , Cheikh B. Fall, Anna Borlase, Samba D. Diop, Duncan Berger, Bonnie L. Webster, Babacar Faye, Nicolas D. Diouf, David Rollinson, Mariama Sène, Khalilou Bâ, and Joanne P. Webster
Author affiliations: Royal Veterinary College, University of London, Hatfield, UK (S. Catalano, E. Léger, A. Borlase, J.P. Webster); Université Cheikh Anta Diop, Dakar, Senegal (C.B. Fall, B. Faye); Big Data Institute, University of Oxford, Oxford, UK (A. Borlase); Université Alioune Diop de Bambey, Bambey, Senegal (S.D. Diop); Wellcome Sanger Institute, Hinxton, UK (D. Berger); Natural History Museum, London, UK (B.L. Webster, D. Rollinson); Université Gaston Berger, Saint-Louis, Senegal (N.D. Diouf, M. Sène); Institut de Recherche pour le Développement, Dakar (K. Bâ)

Main Article

Table 1

Schistosoma mansoni infection rate and intensity by host and study site, Senegal, 2015–2018*

Study site Mastomys huberti mice
Arvicanthis niloticus rats
School-aged children
Biomphalaria pfeifferi, snails, no. infected/ total no. (%)
No. infected/ total no. (%) Median (range) infection intensity No. infected/ total no. (%) Median (range) infection intensity No. infected/ total no. (%) Median (range) infection intensity
Didjiery† 0/12 NA 0/69 NA 6/17 (35.3) 180 (12–408) 0/111
Ganket 2/4 (50.0) 18.5 (5–32) 0/4 NA NA NA NA
Gueo 10/19 (52.6) 14 (2–64) NA NA NA NA NA
Keur Momar Sarr 1/19 (5.3) 2 NA NA NA NA NA
Mbane† 0/60 NA 0/34 NA 1/26 (3.8) 264 1/55 (1.8)
Merina Guewel 1/12 (8.3) 2 NA NA 6/16 (37.5) 42 (12–108) NA
Nder† 1/60 (1.7) 2 0/11 NA 5/44 (11.4) 12 (12–24) 6/84 (7.1)
Ndombo NA NA NA NA 5/101 (5.0) 12 (12–24) 0/5
Richard Toll† 0/10 NA 1/73 (1.4) 4 13/29 (44.8) 180 (24–1,656) 0/4
Temeye† 8/43 (18.6) 4 (2–35) 0/4 NA 1/21 (8.3) 12 2/75 (2.7)
Thiago† 0/4 NA NA NA NA NA 0/2

*Only study sites where infected hosts were detected are included. Infection intensities were calculated by using eggs per gram of fecal samples for school-aged children and number of adult worms in rodents (M. huberti and A. niloticus). Infection intensity was not quantified for B. pfeifferi snails (intermediate host). NA, not applicable.
†For rodents, values include data previously reported (21).

Main Article

References
  1. World Health Organization. Schistosomiasis and soil-transmitted helminthiases: numbers of people treated in 2017. Wkly Epidemiol Rec. 2018;93:68192. https://www.who.int/publications-detail/who-wer9350
  2. World Health Organization. Ending the neglect to attain the sustainable development goals: a road map for neglected tropical diseases 2021–2030. 2020 Feb [cited 2020 Feb 24]. https://www.who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs--NTD-Roadmap.pdf?ua=1
  3. Colley  DG, Loker  ES. New tools for old questions: how strictly human are “human schistosomes”—and does it matter? J Infect Dis. 2018;218:3446. DOIPubMedGoogle Scholar
  4. Rudge  JW, Webster  JP, Lu  DB, Wang  TP, Fang  GR, Basáñez  MG. Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proc Natl Acad Sci U S A. 2013;110:1145762. DOIPubMedGoogle Scholar
  5. Gordon  CA, Kurscheid  J, Williams  GM, Clements  ACA, Li  Y, Zhou  XN, et al. Asian schistosomiasis: current status and prospects for control leading to elimination. Trop Med Infect Dis. 2019;4:40. DOIPubMedGoogle Scholar
  6. Crellen  T, Allan  F, David  S, Durrant  C, Huckvale  T, Holroyd  N, et al. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep. 2016;6:20954. DOIPubMedGoogle Scholar
  7. Théron  A, Sire  C, Rognon  A, Prugnolle  F, Durand  P. Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology. 2004;129:57185. DOIPubMedGoogle Scholar
  8. Gentile  R, Barreto  MG, Gonçalves  MM, Soares  MS, D’Andrea  PS. The role of wild rodents in the transmission of Schistosoma mansoni in Brazil. In: Rokni MB, editor. Schistosomiasis. London: IntechOpen Limited; 2012. p. 231–54. https://www.intechopen.com/books/schistosomiasis/the-role-of-wild-rodents-in-the-transmission-of-schistosoma-mansoni-in-brazil
  9. Standley  CJ, Dobson  AP, Stothard  JR. Out of animals and back again: schistosomiasis as a zoonosis in Africa. In: Rokni MB, editor. Schistosomiasis. London: IntechOpen Limited; 2012. p. 209–30. https://www.intechopen.com/books/schistosomiasis/out-of-animals-and-back-again-schistosomiasis-as-a-zoonosis-in-africa
  10. Webster  BL, Diaw  OT, Seye  MM, Webster  JP, Rollinson  D. Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PLoS Negl Trop Dis. 2013;7:e2110. DOIPubMedGoogle Scholar
  11. Hanelt  B, Mwangi  IN, Kinuthia  JM, Maina  GM, Agola  LE, Mutuku  MW, et al. Schistosomes of small mammals from the Lake Victoria Basin, Kenya: new species, familiar species, and implications for schistosomiasis control. Parasitology. 2010;137:110918. DOIPubMedGoogle Scholar
  12. Webster  JP, Gower  CM, Knowles  SC, Molyneux  DH, Fenton  A. One health - an ecological and evolutionary framework for tackling Neglected Zoonotic Diseases. Evol Appl. 2016;9:31333. DOIPubMedGoogle Scholar
  13. Léger  E, Webster  JP. Hybridizations within the Genus Schistosoma: implications for evolution, epidemiology and control. Parasitology. 2017;144:6580. DOIPubMedGoogle Scholar
  14. Van den Broeck  F, Maes  GE, Larmuseau  MH, Rollinson  D, Sy  I, Faye  D, et al. Reconstructing colonization dynamics of the human parasite Schistosoma mansoni following anthropogenic environmental changes in northwest Senegal. PLoS Negl Trop Dis. 2015;9:e0003998. DOIPubMedGoogle Scholar
  15. Jones  I, Lund  A, Riveau  G, Jouanard  N, Ndione  RA, Sokolow  SH, et al. Ecological control of schistosomiasis in Sub-Saharan Africa: restoration of predator-prey dynamics to reduce transmission. In: Roche B, Broutin H, Simard F, editors. Ecology and evolution of infectious disease: pathogen control and public health management in low-income countries. Oxford: Oxford University Press; 2018. p. 236–51.
  16. Uhlir  PF. Scientific data for decision making toward sustainable development: Senegal River Basin case study. Washington: The National Academies Press; 2002.
  17. Knowles  SCL, Webster  BL, Garba  A, Sacko  M, Diaw  OT, Fenwick  A, et al. Epidemiological interactions between urogenital and intestinal human schistosomiasis in the context of praziquantel treatment across three West African countries. PLoS Negl Trop Dis. 2015;9:e0004019. DOIPubMedGoogle Scholar
  18. Boon  NAM, Van Den Broeck  F, Faye  D, Volckaert  FAM, Mboup  S, Polman  K, et al. Barcoding hybrids: heterogeneous distribution of Schistosoma haematobium × Schistosoma bovis hybrids across the Senegal River Basin. Parasitology. 2018;145:63445. DOIPubMedGoogle Scholar
  19. Lund  AJ, Sam  MM, Sy  AB, Sow  OW, Ali  S, Sokolow  SH, et al. Unavoidable risks: local perspectives on water contact behavior and implications for schistosomiasis control in an agricultural region of northern Senegal. Am J Trop Med Hyg. 2019;101:83747. DOIPubMedGoogle Scholar
  20. Duplantier  JM, Sène  M. Rodents as reservoir hosts in the transmission of Schistosoma mansoni in Richard-Toll, Senegal, West Africa. J Helminthol. 2000;74:12935. DOIPubMedGoogle Scholar
  21. Catalano  S, Sène  M, Diouf  ND, Fall  CB, Borlase  A, Léger  E, et al. Rodents as natural hosts of zoonotic Schistosoma species and hybrids: an epidemiological and evolutionary perspective from West Africa. J Infect Dis. 2018;218:42933. DOIPubMedGoogle Scholar
  22. Granjon  L, Duplantier  JM. Les rongeurs de l'Afrique Sahélo-Soudanienne. Marseille (France): Muséum National d’Histoire Naturelle; 2009.
  23. Whisson  DA, Engeman  RM, Collins  K. Developing relative abundance techniques (RATs) for monitoring rodent populations. Wildl Res. 2005;32:23944. DOIGoogle Scholar
  24. Gower  CM, Shrivastava  J, Lamberton  PHL, Rollinson  D, Webster  BL, Emery  A, et al. Development and application of an ethically and epidemiologically advantageous assay for the multi-locus microsatellite analysis of Schistosoma mansoni. Parasitology. 2007;134:52336. DOIPubMedGoogle Scholar
  25. Yu  JM, de Vlas  SJ, Jiang  QW, Gryseels  B. Comparison of the Kato-Katz technique, hatching test and indirect hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. Parasitol Int. 2007;56:459. DOIPubMedGoogle Scholar
  26. Emery  AM, Allan  FE, Rabone  ME, Rollinson  D. Schistosomiasis collection at NHM (SCAN). Parasit Vectors. 2012;5:185. DOIPubMedGoogle Scholar
  27. Katz  N, Chaves  A, Pellegrino  J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo. 1972;14:397400.PubMedGoogle Scholar
  28. Allan  F, Dunn  AM, Emery  AM, Stothard  JR, Johnston  DA, Kane  RA, et al. Use of sentinel snails for the detection of Schistosoma haematobium transmission on Zanzibar and observations on transmission patterns. Acta Trop. 2013;128:23440. DOIPubMedGoogle Scholar
  29. Frandsen  F, Christensen  NO. An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance. Acta Trop. 1984;41:181202.PubMedGoogle Scholar
  30. Webster  BL, Rabone  M, Pennance  T, Emery  AM, Allan  F, Gouvras  A, et al. Development of novel multiplex microsatellite polymerase chain reactions to enable high-throughput population genetic studies of Schistosoma haematobium. Parasit Vectors. 2015;8:432. DOIPubMedGoogle Scholar
  31. Zarowiecki  MZ, Huyse  T, Littlewood  DTJ. Making the most of mitochondrial genomes—markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). Int J Parasitol. 2007;37:140118. DOIPubMedGoogle Scholar
  32. Katoh  K, Rozewicki  J, Yamada  KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:11606. DOIPubMedGoogle Scholar
  33. Ranwez  V, Harispe  S, Delsuc  F, Douzery  EJ. MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS One. 2011;6:e22594. DOIPubMedGoogle Scholar
  34. Crellen  T, Walker  M, Lamberton  PHL, Kabatereine  NB, Tukahebwa  EM, Cotton  JA, et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin Infect Dis. 2016;63:11519.PubMedGoogle Scholar
  35. Protasio  AV, Tsai  IJ, Babbage  A, Nichol  S, Hunt  M, Aslett  MA, et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2012;6:e1455. DOIPubMedGoogle Scholar
  36. McKenna  A, Hanna  M, Banks  E, Sivachenko  A, Cibulskis  K, Kernytsky  A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297303. DOIPubMedGoogle Scholar
  37. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  38. Ronquist  F, Teslenko  M, van der Mark  P, Ayres  DL, Darling  A, Höhna  S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:53942. DOIPubMedGoogle Scholar
  39. Bouckaert  R, Vaughan  TG, Barido-Sottani  J, Duchêne  S, Fourment  M, Gavryushkina  A, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput Biol. 2019;15:e1006650. DOIPubMedGoogle Scholar
  40. Parker  J, Rambaut  A, Pybus  OG. Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol. 2008;8:23946. DOIPubMedGoogle Scholar
  41. Sikes  RS; Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:66388. DOIPubMedGoogle Scholar
  42. Morgan  JA, Dejong  RJ, Adeoye  GO, Ansa  ED, Barbosa  CS, Brémond  P, et al. Origin and diversification of the human parasite Schistosoma mansoni. Mol Ecol. 2005;14:3889902. DOIPubMedGoogle Scholar
  43. Campbell  G, Noble  LR, Rollinson  D, Southgate  VR, Webster  JP, Jones  CS. Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. Mol Ecol. 2010;19:24156. DOIPubMedGoogle Scholar
  44. Théron  A. Chronobiology of trematode cercarial emergence: from data recovery to epidemiological, ecological and evolutionary implications. Adv Parasitol. 2015;88:12364. DOIPubMedGoogle Scholar
  45. Sène  M, Duplantier  JM, Marchand  B, Hervé  JP. Susceptibility of rodents to infection with Schistosoma mansoni in Richard-Toll (Senegal). Parasite. 1996;3:3216. DOIPubMedGoogle Scholar
  46. Catalano  S, Symeou  A, Marsh  KJ, Borlase  A, Léger  E, Fall  CB, et al. Mini-FLOTAC as an alternative, non-invasive diagnostic tool for Schistosoma mansoni and other trematode infections in wildlife reservoirs. Parasit Vectors. 2019;12:439. DOIPubMedGoogle Scholar
  47. Hipsley  CA, Müller  J. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology. Front Genet. 2014;5:138. DOIPubMedGoogle Scholar
  48. Oleaga  A, Rey  O, Polack  B, Grech-Angelini  S, Quilichini  Y, Pérez-Sánchez  R, et al. Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl Trop Dis. 2019;13:e0007543. DOIPubMedGoogle Scholar
  49. Suzán  G, García-Peña  GE, Castro-Arellano  I, Rico  O, Rubio  AV, Tolsá  MJ, et al. Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space. Ecol Evol. 2015;5:86573. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

Page created: May 18, 2020
Page updated: May 18, 2020
Page reviewed: May 18, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external