Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 11—November 2023
Research

Human Salmonellosis Outbreak Linked to Salmonella Typhimurium Epidemic in Wild Songbirds, United States, 2020–2021

Kane Patel1, G. Sean Stapleton1, Rosalie T. Trevejo, Waimon T. Tellier, Jeffrey Higa, Jennifer K. Adams, Sonia M. Hernandez, Susan Sanchez, Nicole M. Nemeth, Emilio E. Debess, Krysta H. Rogers, Aslı Mete, Katherine D. Watson, Leslie Foss, Mabel S.F. Low, Lauren Gollarza, and Megin NicholsComments to Author 
Author affiliations: Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, G.S. Stapleton); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (K. Patel, G.S. Stapleton, J.K. Adams, M.S.F Low, L. Gollarza, M. Nichols); Oregon Health Authority, Portland, Oregon, USA (R.T. Trevejo, E.E. Debess); Washington State Department of Health, Shoreline, Washington, USA (W.T. Tellier); California Department of Public Health, Los Angeles and Richmond, California, USA (J. Higa, L. Foss); Association of Public Health Laboratories, Silver Spring, Maryland, USA (J.K. Adams); University of Georgia, Athens, Georgia, USA (S.M. Hernandez, S. Sanchez, N.M. Nemeth); Wildlife Health Laboratory, California Department of Fish and Wildlife, Rancho Cordova, California, USA (K.H. Rogers); California Animal Health and Food Safety Laboratory, University of California Davis, Davis, California (A. Mete, K.D. Watson)

Main Article

Figure 1

Geographic locations of human Salmonella Typhimurium cases in the United States, 2020–2021. Colored shading indicates number of cases by state; black bird icons indicate states that detected the outbreak strain of Salmonella Typhimurium from wild birds (within 0–12 allele differences based on core genome multilocus sequence typing). One isolate was obtained from a dog’s mouth wound at a veterinary hospital in Oregon (dog icon) and matched the outbreak strain. Numbers of genetically related isolates obtained from wild birds are indicated within animal icons. Salmonella Typhimurium was also detected in wild birds as part of the Southeastern Cooperative Wildlife Disease Study at the University of Georgia (gray bird icons); those isolates were serotyped at the National Veterinary Services Laboratory (30), but whole-genome sequencing was not performed to confirm relatedness to the outbreak strain.

Figure 1. Geographic locations of human Salmonella Typhimurium cases in the United States, 2020–2021. Colored shading indicates number of cases by state; black bird icons indicate states that detected the outbreak strain of Salmonella Typhimurium from wild birds (within 0–12 allele differences based on core genome multilocus sequence typing). One isolate was obtained from a dog’s mouth wound at a veterinary hospital in Oregon (dog icon) and matched the outbreak strain. Numbers of genetically related isolates obtained from wild birds are indicated within animal icons. Salmonella Typhimurium was also detected in wild birds as part of the Southeastern Cooperative Wildlife Disease Study at the University of Georgia (gray bird icons); those isolates were serotyped at the National Veterinary Services Laboratory (30), but whole-genome sequencing was not performed to confirm relatedness to the outbreak strain.

Main Article

References
  1. Scallan  E, Hoekstra  RM, Angulo  FJ, Tauxe  RV, Widdowson  MA, Roy  SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17:715. DOIPubMedGoogle Scholar
  2. Beshearse  E, Bruce  BB, Nane  GF, Cooke  RM, Aspinall  W, Hald  T, et al. Attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States. Emerg Infect Dis. 2021;27:18295. DOIPubMedGoogle Scholar
  3. Hale  CR, Scallan  E, Cronquist  AB, Dunn  J, Smith  K, Robinson  T, et al. Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin Infect Dis. 2012;54(Suppl 5):S4729. DOIPubMedGoogle Scholar
  4. Shane  AL, Mody  RK, Crump  JA, Tarr  PI, Steiner  TS, Kotloff  K, et al. 2017 Infectious Diseases Society of America clinical practice guidelines for the diagnosis and management of infectious diarrhea. Clin Infect Dis. 2017;65:e4580. DOIPubMedGoogle Scholar
  5. Hall  AJ, Saito  EK. Avian wildlife mortality events due to salmonellosis in the United States, 1985-2004. J Wildl Dis. 2008;44:58593. DOIPubMedGoogle Scholar
  6. Hernandez  SM, Keel  K, Sanchez  S, Trees  E, Gerner-Smidt  P, Adams  JK, et al. Epidemiology of a Salmonella enterica subsp. enterica serovar Typhimurium strain associated with a songbird outbreak. Appl Environ Microbiol. 2012;78:72908. DOIPubMedGoogle Scholar
  7. Tizard  I. Salmonellosis in wild birds. Seminars in avian and Exotic Pet Medicine. 2004;13:50–66.
  8. Alley  MR, Connolly  JH, Fenwick  SG, Mackereth  GF, Leyland  MJ, Rogers  LE, et al. An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand. N Z Vet J. 2002;50:1706. DOIPubMedGoogle Scholar
  9. Daoust  P, Prescott  JF. Salmonellosis. In: Thomas N, Hunter DB, Atkinson CT, editors. Infectious disease of wild birds. Ames (IA); Blackwell Publishing, 2007. p. 270–288.
  10. Hudson  CR, Quist  C, Lee  MD, Keyes  K, Dodson  SV, Morales  C, et al. Genetic relatedness of Salmonella isolates from nondomestic birds in Southeastern United States. J Clin Microbiol. 2000;38:18605. DOIPubMedGoogle Scholar
  11. Lawson  B, de Pinna  E, Horton  RA, Macgregor  SK, John  SK, Chantrey  J, et al. Epidemiological evidence that garden birds are a source of human salmonellosis in England and Wales. PLoS One. 2014;9:e88968. DOIPubMedGoogle Scholar
  12. Mather  AE, Lawson  B, de Pinna  E, Wigley  P, Parkhill  J, Thomson  NR, et al. Genomic analysis of Salmonella enterica serovar Typhimurium from wild passerines in England and Wales. Appl Environ Microbiol. 2016;82:672835. DOIPubMedGoogle Scholar
  13. Refsum  T, Vikøren  T, Handeland  K, Kapperud  G, Holstad  G. Epidemiologic and pathologic aspects of Salmonella typhimurium infection in passerine birds in Norway. J Wildl Dis. 2003;39:6472. DOIPubMedGoogle Scholar
  14. Smith  OM, Snyder  WE, Owen  JP. Are we overestimating risk of enteric pathogen spillover from wild birds to humans? Biol Rev Camb Philos Soc. 2020;95:65279. DOIPubMedGoogle Scholar
  15. Hamer  SA, Lehrer  E, Magle  SB. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. Zoonoses Public Health. 2012;59:35564. DOIPubMedGoogle Scholar
  16. Murray  MH, Becker  DJ, Hall  RJ, Hernandez  SM. Wildlife health and supplemental feeding: A review and management recommendations. Biol Conserv. 2016;204:16374. DOIGoogle Scholar
  17. Robb  GN, McDonald  RA, Chamberlain  DE, Bearhop  S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front Ecol Environ. 2008;6:47684. DOIGoogle Scholar
  18. Fuller  RA, Irvine  KN. Interactions between people and nature in urban environments. In: Gaston KJ, editor. Urban ecology (Ecological Reviews). Cambridge: Cambridge University Press; 2012. p. 134-171.
  19. Jones  DN, James Reynolds  S. Feeding birds in our towns and cities: a global research opportunity. J Avian Biol. 2008;39:26571. DOIGoogle Scholar
  20. Marzluff  JM. Worldwide urbanization and its effects on birds. In: Marzluff JM, Bowman R, Donnelly R, editors. Avian ecology and conversation in an urbanizing world. Boston: Springer; 2011. p. 19–47.
  21. Fuller  T, Bensch  S, Müller  I, Novembre  J, Pérez-Tris  J, Ricklefs  RE, et al. The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research. EcoHealth. 2012;9:808. DOIPubMedGoogle Scholar
  22. Mills  JN, Gage  KL, Khan  AS. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect. 2010;118:150714. DOIPubMedGoogle Scholar
  23. Kapperud  G, Stenwig  H, Lassen  J. Epidemiology of Salmonella typhimurium O:4-12 infection in Norway: evidence of transmission from an avian wildlife reservoir. Am J Epidemiol. 1998;147:77482. DOIPubMedGoogle Scholar
  24. Tauni  MA, Osterlund  A. Outbreak of Salmonella typhimurium in cats and humans associated with infection in wild birds. J Small Anim Pract. 2000;41:33941. DOIPubMedGoogle Scholar
  25. Sykes  JE, Marks  SL. Salmonellosis. In: Sykes JE, editor. Canine and feline infectious diseases. St. Louis (MO): Elsevier Inc.; 2014. p. 437–44.
  26. National Center for Biotechnology Information Pathogen Detection Project. [cited 2021 Dec 8] https://www.ncbi.nlm.nih.gov/pathogens/
  27. Katz  LS, Griswold  T, Williams-Newkirk  AJ, Wagner  D, Petkau  A, Sieffert  C, et al. A comparative analysis of the lyve-set phylogenomics pipeline for genomic epidemiology of foodborne pathogens. Front Microbiol. 2017;8:375. DOIPubMedGoogle Scholar
  28. Centers for Disease Control and Prevention. PulseNet methods and protocols: Whole genome sequencing (WGS). 2016 [cited 2021 Dec 6] https://www.cdc.gov/pulsenet/pathogens/wgs.html
  29. Centers for Disease Control and Prevention. Foodborne Disease Active Surveillance Network (FoodNet). 2020 [cited 2021 Dec 8] https://www.cdc.gov/foodnet/index.html.
  30. Morningstar-Shaw  BR, Mackie  TA, Barker  DK, Palmer  EA. Salmonella serotypes isolated from animals and related sources. 2016 [cited 2022 Nov 2] https://www.cdc.gov/nationalsurveillance/pdfs/salmonella-serotypes-isolated-animals-and-related-sources-508.pdf
  31. Centers for Disease Control and Prevention. Salmonella outbreak linked to wild songbirds. 2021 [cited 2021 Dec 8]. https://www.cdc.gov/salmonella/typhimurium-04-21/index.html
  32. Newton  I. Irruptive migration. In: Breed MD, Moore J, editors. Encyclopedia of animal behavior, 1st edition. Academic Press. Oxford: American Press; 2010. p. 221–229.
  33. Lawson  B, Robinson  RA, Toms  MP, Risely  K, MacDonald  S, Cunningham  AA. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos Trans R Soc Lond B Biol Sci. 2018;373:20170091. DOIPubMedGoogle Scholar
  34. Wilcoxen  TE, Horn  DJ, Hogan  BM, Hubble  CN, Huber  SJ, Flamm  J, et al. Effects of bird-feeding activities on the health of wild birds. Conserv Physiol. 2015;3:cov058. DOIPubMedGoogle Scholar
  35. Cherry  B, Burns  A, Johnson  GS, Pfeiffer  H, Dumas  N, Barrett  D, et al. Salmonella Typhimurium outbreak associated with veterinary clinic. Emerg Infect Dis. 2004;10:224951. DOIPubMedGoogle Scholar
  36. Loyd  KAT, Hernandez  SM, Carroll  JP, Abernathy  KJ, Marshall  GJ. Quantifying free-roaming domestic cat predation using animal-borne video cameras. Biol Conserv. 2013;160:1839. DOIGoogle Scholar
  37. Feliciano  LM, Underwood  TJ, Aruscavage  DF. The effectiveness of bird feeder cleaning methods with and without debris. Wilson J Ornithol. 2018;130:31320. DOIGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: August 31, 2023
Page updated: October 23, 2023
Page reviewed: October 23, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external