Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 6, Number 5—October 2000
Research

Toxin Gene Expression by Shiga Toxin-Producing Escherichia coli: the Role of Antibiotics and the Bacterial SOS Response

Patrick T. Kimmitt, Colin R. Harwood, and Michael R. BarerComments to Author 

Author affiliations: The Medical School, University of Newcastle, Newcastle upon Tyne, United Kingdom

Article in Chinese

Main Article

Table

Induction of stx2 expression by antibiotics under different incubation conditionsa

Target of action Incubation conditionsb
Agent (disc content mg/L) mO2/37 O2/37 mO2/42 AnO2/37 O2/30 O2/42 Zone patternc
Background + - - - + - NA
DNA Gyrase
Quinolonesd + + + + + +/- >MIC
Novobiocin (30) + - - - + - >MIC
Folate metabolism
Trimethoprim (5) + + - + + - >MIC
Smx (25) + + - + - - >MIC
DNA
Metronidazole (50) - - - - - - NA
Furazolidone (50) + + - - + - =MIC
Cell envelope
Cephalexin (30) + + - - +/- - =MIC
Amoxycillin (25) + + - - - - =MIC
Amoxy/Clav (20/10) +/- - - - - - =MIC
Ampicillin (10) + + - - - - =MIC
Pip/Taz (10/75) + + - - - - =MIC
Imipenem (10) - - - - - - NA
Aztreonam (30) + + - - - - =MIC
Cefuroxime (5) + + - - - - =MIC
Ceftazidime (30) + + - - - - =MIC
Cefotaxime (30) + + - - - - =MIC
Fosfomycin (200) - - - - - - NA
Polymyxin B (300 IU) +/- - - - + - =MIC
Translation
Gentamicin (10) - - - - - - NA
Chloramphenicol (30) - - - - - - NA
Doxycycline (30) - - - - - - NA
Erythromycin (15) - - - - - - NA
Transcription
Rifampin (25) - - +/- - - - NA

aStx2 induction effects (zones of blue coloration, Figure 1): -, not detected, +/-, borderline induction, +, definite induction, >MIC, zone of induction within the zone of growth inhibition; =MIC, induction on the edge of the zone of inhibition; NA, not applicable; Amoxy/Clav, amoxycillin/clavulanic acid; Pip/Taz, piperacillin/tazobactam; Smx, sulphamethoxazole.
bO2, aerobic; mO2 microaerobic; AO2, anaerobic/incubation temperature °C.
cNote: The patterns indicated were detected in three separate experiments and recorded by two independent observers.
dThe quinolones tested are listed in the Materials and Methods section.

Main Article

References
  1. Karmali  MA, Petric  M, Lim  C, Fleming  PC, Steele  BT. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet. 1983;2:1299300. DOIPubMedGoogle Scholar
  2. Riley  LW, Remis  RS, Helgerson  SD, McGee  HB, Wells  JG, Davis  BR, Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:6815. DOIPubMedGoogle Scholar
  3. Mead  PS, Griffin  PM. Escherichia coli O157:H7. Lancet. 1998;352:120712. DOIPubMedGoogle Scholar
  4. Acheson  DW. Nomenclature of enterotoxins. Lancet. 1998;351:1003. DOIPubMedGoogle Scholar
  5. Scotland  SM, Willshaw  GA, Smith  HR, Rowe  B. Properties of strains of Escherichia coli belonging to serogroup O157 with special reference to production of Vero cytotoxins VT1 and VT2. Epidemiol Infect. 1987;99:61324. DOIPubMedGoogle Scholar
  6. Ostroff  SM, Tarr  PI, Neill  MA, Lewis  JH, Hargrett-Bean  N, Kobayashi  JM. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J Infect Dis. 1989;160:9948.PubMedGoogle Scholar
  7. Carter  AO, Borczyk  AA, Carlson  JA, Harvey  B, Hockin  JC, Karmali  MA, A severe outbreak of Escherichia coli O157:H7-associated hemorrhagic colitis in a nursing home. N Engl J Med. 1987;317:1496500. DOIPubMedGoogle Scholar
  8. Proulx  F, Seidman  E. Is antibiotic therapy of mice and humans useful in Escherichia coli O157:H7 enteritis? Eur J Clin Microbiol Infect Dis. 1999;18:5334. DOIPubMedGoogle Scholar
  9. Walker  GC. The SOS response of Escherichia coli. In: F.C. Neidhardt, editor. Escherichia coli and Salmonella. Washington: ASM Press; 1996. p. 1400-16.
  10. Muhldorfer  I, Hacker  J, Keusch  GT, Acheson  DW, Tschape  H, Kane  AV. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun. 1996;64:495502.PubMedGoogle Scholar
  11. Neely  MN, Friedman  DI. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol. 1998;28:125567. DOIPubMedGoogle Scholar
  12. Kimmitt  PT, Harwood  CR, Barer  MR. Induction of type 2 shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. Lancet. 1999;353:15889. DOIPubMedGoogle Scholar
  13. Matsushiro  A, Sato  K, Miyamoto  H, Yamamura  T, Honda  T. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J Bacteriol. 1999;181:225760.PubMedGoogle Scholar
  14. Plunkett  G, Rose  DJ, Durfee  TJ, Blattner  FR. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol. 1999;181:176778.PubMedGoogle Scholar
  15. Fuchs  S, Muhldorfer  I, Donohue-Rolfe  A, Kerenyic  M, Emody  L, Alexiev  R, Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. Microb Pathog. 1999;27:1323. DOIPubMedGoogle Scholar
  16. Miller  JH. Experiments in molecular genetics. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory; 1972.
  17. Karch  H, Strockbine  NA, O'Brien  AD. Growth of Escherichia coli in the presence of trimethoprim-sulfamethoxazole facilitates detection of Shiga-like toxin producing strains by colony blot assay. FEMS Microbiol Lett. 1986;35:1415. DOIGoogle Scholar
  18. Yoh  M, Frimpong  EK, Honda  T. Effect of antimicrobial agents, especially fosfomycin, on the production and release of Vero toxin by enterohaemorrhagic Escherichia coli O157:H7. FEMS Immunol Med Microbiol. 1997;19:5764. DOIPubMedGoogle Scholar
  19. Walterspiel  JN, Ashkenazi  S, Morrow  AL, Cleary  TG. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin-I. Infection. 1992;20:259. DOIPubMedGoogle Scholar
  20. Grif  K, Dierich  MP, Karch  H, Allerberger  F. Strain-specific differences in the amount of Shiga toxin released from enterohaemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur J Clin Microbiol Infect Dis. 1998;17:7616. DOIPubMedGoogle Scholar
  21. Drlica  K, Zhao  XL. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997;61:37794.PubMedGoogle Scholar
  22. Lewin  CS, Amyes  SG. The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J Med Microbiol. 1991;34:32932. DOIPubMedGoogle Scholar
  23. Quillardet  P, Hofnung  M. The SOS chromotest: a review. Mutat Res. 1993;297:23579.PubMedGoogle Scholar
  24. Yee  AJ, De Grandis  S, Gyles  CL. Mitomycin-induced synthesis of a Shiga-like toxin from enteropathogenic Escherichia coli H.I.8. Infect Immun. 1993;61:45103.PubMedGoogle Scholar
  25. al-Jumaili  I, Burke  DA, Scotland  SM, al-Mardini  H, Record  CO. A method of enhancing verocytotoxin production by Escherichia coli. FEMS Microbiol Lett. 1992;72:1215. DOIPubMedGoogle Scholar
  26. Pavia  AT, Nichols  CR, Green  DP, Tauxe  RV, Mottice  S, Greene  KD, Hemolytic-uremic syndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J Pediatr. 1990;116:54451. DOIPubMedGoogle Scholar
  27. Dundas  S, Todd  WTA. Clinical presentation, complications and treatment of infection with verocytotoxin producing Escherichia coli. Challenges for the clinician. J Appl Microbiol. 2000;88:24S30S.PubMedGoogle Scholar
  28. Wong  CS, Jelacic  S, Habeeb  RL, Watkins  SL, Tarr  PI. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med. 2000;342:19306. DOIPubMedGoogle Scholar
  29. Lesesne  JB, Rothschild  N, Erickson  B, Korec  S, Sisk  R, Keller  J, Cancer-associated hemolytic -uremic syndrome: analysis of 85 cases from a national registry. J Clin Oncol. 1989;115:7819.PubMedGoogle Scholar
  30. Takahashi  K, Narita  K, Kato  Y, Sugiyama  T, Koide  N, Yoshida  T, Low-level release of Shiga-like toxin (verocytotoxin) and endotoxin from enterohemorrhagic Escherichia coli treated with imipenem. Antimicrob Agents Chemother. 1997;41:22956.PubMedGoogle Scholar
  31. Centers for Disease Control and Prevention. Health Information for International Travel 1999-2000. Atlanta, GA;1999. p. 168.
  32. Cheetham  BF, Katz  ME. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol. 1995;18:2018. DOIPubMedGoogle Scholar

Main Article

Page created: December 17, 2010
Page updated: December 17, 2010
Page reviewed: December 17, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external