Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 4—April 2014

Rapid Increase in Pertactin-deficient Bordetella pertussis Isolates, Australia

Connie Lam, Sophie Octavia, Lawrence Ricafort, Vitali Sintchenko, Gwendolyn L. Gilbert, Nicholas Wood, Peter McIntyre, Helen Marshall, Nicole Guiso, Anthony D. Keil, Andrew Lawrence, Jenny Robson, Geoff Hogg, and Ruiting LanComments to Author 
Author affiliations: University of New South Wales, Sydney, New South Wales, Australia (C. Lam. S. Octavia, L. Ricafort, R. Lan); University of Sydney, Sydney (V. Sintchenko, G.L. Gilbert); Westmead Hospital, Sydney, (V. Sintchenko, N. Wood, P. McIntyre); University of Adelaide, Adelaide, South Australia, Australia (H. Marshall); Institut Pasteur, Paris, France (N. Guiso); Princess Margaret Hospital for Children, Perth, Western Australia, Australia (A.D. Keil); Women’s and Children’s Hospital, Adelaide (A. Lawrence); Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia (J. Robson); University of Melbourne, Parkville, Victoria, Australia (G. Hogg)

Main Article

Figure 3

Variations in protactin (prn) gene of prn-negative Bordetella pertussis isolates, Australia, 2008–2012, Ninety-six B. pertussis isolates were identified as prn negative. Eighty of these isolates had 1 of 4 mechanisms of prn disruption: IS481 (in forward and reverse directions) and IS1002, which were inserted at the ACTAGG motif within prn, or an extended homopolymeric tract of G residues (n = 1). Lower case letters indicate residues that are conserved in all IS disruptions, and red letters indic

Figure 3. . . Variations in protactin (prn) gene of prn-negative Bordetella pertussis isolates, Australia, 2008–2012, Ninety-six B. pertussis isolates were identified as prn negative. Eighty of these isolates had 1 of 4 mechanisms of prn disruption: IS481 (in forward and reverse directions) and IS1002, which were inserted at the ACTAGG motif within prn, or an extended homopolymeric tract of G residues (n = 1). Lower case letters indicate residues that are conserved in all IS disruptions, and red letters indicate differences in IS disruptions. Positions of nucleotides have been numbered relative to the first start codon of sequence AJ011092 (17). The prn gene of 2 isolates was not amplified by PCR with a combination of primers from published studies (1519), which indicated a deletion of the entire gene. Sixteen isolates that had no gene disruptions were also observed.

Main Article

  1. Kurniawan  J, Maharjan  RP, Chan  WF, Reeves  PR, Sintchenko  V, Gilbert  GL, Bordetella pertussis clones identified by multilocus variable-number tandem-repeat analysis. Emerg Infect Dis. 2010;16:297300. DOIPubMedGoogle Scholar
  2. Quinn  HE, Mahajan  D, Hueston  L, Campbell  P, Menzies  RI, Gilbert  GL, The seroepidemiology of pertussis in NSW: fluctuating immunity profiles related to changes in vaccination schedules. N S W Public Health Bull. 2011;22:2249. DOIPubMedGoogle Scholar
  3. Campbell  P, McIntyre  P, Quinn  H, Hueston  L, Gilbert  GL, McVernon  J. Increased population prevalence of low pertussis toxin antibody levels in young children preceding a record pertussis epidemic in Australia. PLoS ONE. 2012;7:e35874. DOIPubMedGoogle Scholar
  4. Spokes  PJ, Quinn  HE, McAnulty  JM. Review of the 2008–2009 pertussis epidemic in NSW: notifications and hospitalisations. N S W Public Health Bull. 2010;21:16773. DOIPubMedGoogle Scholar
  5. Mooi  FR, van der Maas  NA, de Melker  HE. Pertussis resurgence: waning immunity and pathogen adaptation: two sides of the same coin. Epidemiol Infect. 2013;13:110. DOIPubMedGoogle Scholar
  6. Mooi  FR, van Loo  IH, van Gent  M, He  Q, Bart  MJ, Heuvelman  KJ, Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis. 2009;15:120613. DOIPubMedGoogle Scholar
  7. Lam  C, Octavia  S, Bahrame  Z, Sintchenko  V, Gilbert  GL, Lan  R. Selection and emergence of pertussis toxin promoter ptxP3 allele in the evolution of Bordetella pertussis. Infect Genet Evol. 2012;12:4925. DOIPubMedGoogle Scholar
  8. Octavia  S, Maharjan  RP, Sintchenko  V, Stevenson  G, Reeves  PR, Gilbert  GL, Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. Mol Biol Evol. 2011;28:70715. DOIPubMedGoogle Scholar
  9. Octavia  S, Sintchenko  V, Gilbert  GL, Lawrence  A, Keil  AD, Hogg  G, Newly emerging clones of Bordetella pertussis carrying prn2 and ptxP3 alleles implicated in Australian pertussis epidemic in 2008–2010. J Infect Dis. 2012;205:12204. DOIPubMedGoogle Scholar
  10. Hegerle  N, Paris  AS, Brun  D, Dore  G, Njamkepo  E, Guillot  S, Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin. Clin Microbiol Infect. 2012;•••:E3406 PubMed. DOIPubMedGoogle Scholar
  11. Bouchez  V, Brun  D, Cantinelli  T, Dore  G, Njamkepo  E, Guiso  N. First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. Vaccine. 2009;27:603441. DOIPubMedGoogle Scholar
  12. Otsuka  N, Han  HJ, Toyoizumi-Ajisaka  H, Nakamura  Y, Arakawa  Y, Shibayama  K, Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS ONE. 2012;7:e31985. DOIPubMedGoogle Scholar
  13. Barkoff  AM, Mertsola  J, Guillot  S, Guiso  N, Berbers  G, He  Q. Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol. 2012;19:17034. DOIPubMedGoogle Scholar
  14. Weber  C, Boursaux-Eude  C, Coralie  G, Caro  V, Guiso  N. Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol. 2001;39:4396403. DOIPubMedGoogle Scholar
  15. Mooi  FR, Hallander  H, Wirsing von Konig  CH, Hoet  B, Guiso  N. Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis. 2000;19:17481. DOIPubMedGoogle Scholar
  16. Fry  NK, Neal  S, Harrison  TG, Miller  E, Matthews  R, George  RC. Genotypic variation in the Bordetella pertussis virulence factors pertactin and pertussis toxin in historical and recent clinical isolates in the United Kingdom. Infect Immun. 2001;69:55208. DOIPubMedGoogle Scholar
  17. Mooi  FR, van Oirschot  H, Heuvelman  K, van der Heide  HG, Gaastra  W, Willems  RJ. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun. 1998;66:6705 .PubMedGoogle Scholar
  18. Boursaux-Eude  C, Thiberge  S, Carletti  G, Guiso  N. Intranasal murine model of Bordetella pertussis infection: II. Sequence variation and protection induced by a tricomponent acellular vaccine. Vaccine. 1999;17:265160. DOIPubMedGoogle Scholar
  19. Kinnear  SM, Boucher  PE, Stibitz  S, Carbonetti  NH. Analysis of BvgA activation of the pertactin gene promoter in Bordetella pertussis. J Bacteriol. 1999;181:523441 .PubMedGoogle Scholar
  20. Bodilis  H, Guiso  N. Virulence of pertactin-negative Bordetella pertussis isolates from infants, France. Emerg Infect Dis. 2013;19:4714 . DOIPubMedGoogle Scholar
  21. Queenan  AM, Cassiday  PK, Evangelista  A. Pertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med. 2013;368:5834. DOIPubMedGoogle Scholar
  22. Pawloski  LC, Queenan  AM, Cassiday  PK, Lynch  AS, Harrison  M, Shang  W, Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the US. Clin Vaccine Immunol. 2013. [Epub ahead of print].
  23. Schmidtke  AJ, Boney  KO, Martin  SW, Skoff  TH, Tondella  ML, Tatti  KM. Population diversity among Bordetella pertussis isolates, United States, 1935–2009. Emerg Infect Dis. 2012;18:124855. DOIPubMedGoogle Scholar
  24. Kurova  N, Njamkepo  E, Brun  D, Tseneva  G, Guiso  N. Monitoring of Bordetella isolates circulating in Saint Petersburg, Russia between 2001 and 2009. Res Microbiol. 2010;161:8105. DOIPubMedGoogle Scholar
  25. Njamkepo  E, Cantinelli  T, Guigon  G, Guiso  N. Genomic analysis and comparison of Bordetella pertussis isolates circulating in low and high vaccine coverage areas. Microbes Infect. 2008;10:15826. DOIPubMedGoogle Scholar
  26. Stibitz  S. IS481 and IS1002 of Bordetella pertussis create a 6-base-pair duplication upon insertion at a consensus target site. J Bacteriol. 1998;180:49636 .PubMedGoogle Scholar
  27. Parkhill  J, Sebaihia  M, Preston  A, Murphy  LD, Thomson  N, Harris  DE, Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35:3240. DOIPubMedGoogle Scholar
  28. Gogol  EB, Cummings  CA, Burns  RC, Relman  DA. Phase variation and microevolution at homopolymeric tracts in Bordetella pertussis. BMC Genomics. 2007;8:122. DOIPubMedGoogle Scholar
  29. Willems  R, Paul  A, van der Heide  HG, ter Avest  AR, Mooi  FR. Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J. 1990;9:28039 .PubMedGoogle Scholar
  30. Salaün  L, Snyder  LA, Saunders  NJ. Adaptation by phase variation in pathogenic bacteria. Adv Appl Microbiol. 2003;52:263301. DOIPubMedGoogle Scholar
  31. van Gent  M, van Loo  IH, Heuvelman  KJ, de Neeling  AJ, Teunis  P, Mooi  FR. Studies on prn variation in the mouse model and comparison with epidemiological data. PLoS ONE. 2011;6:e18014. DOIPubMedGoogle Scholar
  32. Bassinet  L, Gueirard  P, Maitre  B, Housset  B, Gounon  P, Guiso  N. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun. 2000;68:193441 . DOIPubMedGoogle Scholar

Main Article

Page created: February 07, 2014
Page updated: March 19, 2014
Page reviewed: March 19, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.