Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 1—January 2015

Reservoir Host Expansion of Hantavirus, China

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Hemorrhagic fever with renal syndrome (HFRS) is caused by hantavirus. During 1995–2005, China reported 20,000–50,000 cases of HFRS annually, which represents 90% of HFRS cases worldwide (13). In China, HFRS is caused mainly by 2 serotypes of hantavirus: Hantaan virus (HTNV) and Seoul virus (SEOV) (4). Pathogenic hantavirus serotypes are considered to be strictly associated with their serotype-specific reservoir hosts. HTNV is associated with the striped field mouse (Apodemus agrarius), and SEOV is associated with the brown rat (Rattus norvegicus) and the black rat (Rattus rattus) (4,5). HTNV causes a severe form of HFRS, characterized by renal failure that in some cases is followed by pulmonary edema and disseminated intravascular coagulation; the estimated death rate is 5%–15%. SEOV causes a moderate form of HFRS (6).

Jiaonan County in Shandong Province is one of the high-incidence HFRS areas in China. To detect the hantavirus infection in small mammals, we trapped rodents and shrews during December 2012–November 2013 using snap-traps in Jiaonan County (longitude 119°30′–120°30′, latitude 35°35′–36°08′).

We captured 1,276 animals comprising 5 rodent species and 1 shrew species (Table) and analyzed serum antibody against hantavirus of each animal using an antigen sandwich ELISA Kit (Shanghai Jiahe Biotechnology, Shanghai, China). The serum was considered to contain antibodies against hantavirus when the optical density (OD)450nm of the sample was greater than the threshold. The threshold was calculated by using the equation: threshold = the average OD of the negative control + 0.15. ELISA results showed that 23.3% of animals were seropositive to hantavirus antigen (Table). The seropositive rate to hantavirus was 44.0% in Asian house shrews (Suncus murinus), 25.3% in house mice (Mus musculus), 15.4% in Chinese hamsters (Cricetulus griseus), 10.3% in brown rats, 10.1% in striped field mice (Apodemus agraius), and 3.0% in greater long-tailed hamsters (C. triton). The seropositivity rate for rodents was higher during summer (May–August) and lower during spring (March and April) and winter (October and November) but not significantly different among the months.

To determine what types of hantavirus infected the animals, we amplified viral RNA of HTNV and SEOV from animal lung samples using reverse transcription PCR with serotype-specific primers (7); 2.1% of animals had viral RNA of HTNV, and 2.1% had viral RNA of SEOV (Table). HTNV RNA was detected in striped field mice (6.3%), house mice (1.4%), and brown rats (0.6%). The hantavirus-positive animals were captured in February, April, and November for stripped field mice; November for brown rats; and April and November for house mice. SEOV was detected in brown rats (8.2%) and Asian house shrews (1.7%). These SEOV-positive animals were captured in January, March, May, June, and July for brown rats and March and November for Asian house shrews. The phylogenetic analysis of sequences amplified by reverse transcription PCR is presented in the Technical Appendix Figure. The nucleotide sequences of the PCR products have been deposited in GenBank (accession nos. KM357423–KM357452).

Hantavirus had been considered to be strictly associated with specific reservoir hosts and to have the same geographic distribution pattern as these reservoir hosts. All hantaviruses that caused human diseases had been associated with rodents, including members of Murinae, Arvicolinae, and Sigmodontinae spp. Insectivore hantaviruses were not known to cause human disease. The rodent hantavirus and the insectivorous hantaviruses were thought to have co-evolved with their specific rodent and insectivorous hosts over millions of years (8). One observed geographic clustering of hantavirus strains, and the association of hantaviruses with their reservoirs, might have been caused by an isolation-by-distance mechanism (9,10) and mixture of both host switching and co-divergence (10). Our study demonstrated that HTNV not only infects its traditional host, the striped mouse, but also infects house mice and rats; SEOV infects not only rats but also shrews, suggesting host expansion for both HTNV and SEOV in China. Our hypothesis is that the hantaviruses co-evolved with their animal hosts, such as SEOV with rats and HTNV with striped mice, but when their animal hosts expanded their territory, hantavirus had more chance to infect other susceptible rodents and expanded their animal hosts.

Both Asian house shrews and house mice are closely associated with humans by living inside and outside of human houses in China. The Asian house shrew and house mouse have been underestimated as potential animal hosts of SEOV and HTNV. To our knowledge, only 1 previous study had associated Asian house shrews with SEOV; in that study, an SEOV strain was isolated from an Asian house shrew in China (2).



We are grateful to David H. Walker for reviewing our manuscript.

This study was supported by Shandong University.


Li-Zhu Fang1, Li Zhao1, Hong-Ling Wen1, Zhen-Tang Zhang, Jian-Wei Liu, Shu-Ting He, Zai-Feng Xue, Dong-Qiang Ma, Xiao-Shuang Zhang, Leyi Wang, and Xue-Jie YuComments to Author 
Author affiliations: School of Public Health, Shandong University, Jinan, China (L.-Z. Fang, L. Zhao, H.-L. Wen, J.-W.. Liu, S.-T. He, X.-S. Zhang, X.-j. Yu); Huangdao District Center for Disease Control and Prevention, Qingdao City, China (Z.-T. Zhang, Z.-F. Xue, D.-Q. Ma); College of Medicine and Nursing, Dezhou University, Dezhou City, China (Y. Zhang); University of Texas Medical Branch, Galveston, Texas, USA (X.-j. Yu)



  1. McCaughey  C, Hart  CA. Hantaviruses. J Med Microbiol. 2000;49:58799 .PubMedGoogle Scholar
  2. Tang  YW, Xu  ZY, Zhu  ZY, Tsai  TF. Isolation of haemorrhagic fever with renal syndrome virus from Suncus murinus, an insectivore. Lancet. 1985;1:5134 . DOIPubMedGoogle Scholar
  3. Ministry of Health of China. HFRS monitoring programs (trial) [cited 2014 Sep 4].
  4. Chen  HX, Qiu  F, Zhao  X, Luo  CW, Li  XQ. Characteristics of the distribution of epidemic season of hemorrhagic fever with renal syndrome in different regions and different years in China [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 1994;8:197203.
  5. Song  G, Hang  CS, Liao  HX, Fu  JL, Gao  GZ, Qiu  HL, Antigenic difference between viral strains causing classical and mild types of epidemic hemorrhagic fever with renal syndrome in China. J Infect Dis. 1984;150:88994. DOIPubMedGoogle Scholar
  6. Centers for Disease Control and Prevention. Hemorrhagic fever with renal syndrome (HFRS) [cited 2014 Aug 20].
  7. Special Implementation Management Office in China. Hemorrhagic fever syndrome monitoring program [cited 2014 Sep 4].
  8. Yadav  PD, Vincent  MJ, Nichol  ST. Thottapalayam virus is genetically distant to the rodent-borne hantaviruses, consistent with its isolation from the Asian house shrew (Suncus murinus). Virol J. 2007;4:80. DOIPubMedGoogle Scholar
  9. Ramsden  C, Holmes  EC, Charleston  MA. Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol. 2009;26:14353. DOIPubMedGoogle Scholar
  10. Schmidt-Chanasit  J, Essbauer  S, Petraityte  R, Yoshimatsu  K, Tackmann  K, Conraths  FJ, Extensive host sharing of central European Tula virus. J Virol. 2010;84:45974. DOIPubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid2101.140960

1These authors contributed equally to this article.

Related Links


Table of Contents – Volume 21, Number 1—January 2015

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Xue-jie Yu, Shandong University School of Public Health, 44 Wenhuaxilu, Jinan, Shandong Province 250012, China; ; or Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0609, USA

Send To

10000 character(s) remaining.


Page created: December 19, 2014
Page updated: December 19, 2014
Page reviewed: December 19, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.