Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 4—April 2019
Research Letter

Detection of Epizootic Hemorrhagic Disease Virus Serotype 1, Israel

Figures
Article Metrics
15
citations of this article
EID Journal Metrics on Scopus
Author affiliations: Kimron Veterinary Institute, Beit Dagan, Israel

Cite This Article

Abstract

During September 2016–February 2017, we detected epizootic hemorrhagic disease virus (EHDV) in ruminants in Israel. BLAST and phylogenetic analyses of segment 2 in 6 EHDVs isolated from field samples indicated a close relationship to the EHDV serotype 1 strain in Nigeria. Affected cattle had mostly mild or asymptomatic disease.

Epizootic hemorrhagic disease is an infectious, noncontagious viral disease of ruminants, transmitted by insects of the genus Culicoides; it mostly affects white-tailed deer and cattle. Epizootic hemorrhagic disease virus (EHDV) belongs to the genus Orbivirus within the family Reoviridae and is closely related to bluetongue virus (BTV) and African horse-sickness virus. At least 7 EHDV serotypes are currently recognized worldwide (1). (EHDV serotype 1 has been isolated from cattle in the Northern Territory of Australia (2), Nigeria, Ecuador, French Guyana, Réunion Island (in the Indian Ocean) (3), and the United States, where it was also isolated from white-tailed deer (4). In cattle in Israel, EHDV serotype 7 first was recognized in 2006, when it manifested in serious clinical signs (5). EHDV serotype 6 caused an outbreak in 2015, when clinical signs were milder than those associated with EHDV serotype 7 (6). However, EHDV serotype 6 RNA was found in placenta and brains of aborted cattle fetuses during the latter outbreak (6).

In the summer and fall of 2016, several arbovirus infections were registered simultaneously in diseased domestic and wild ruminants in Israel. Included were infections with BTV serotypes 2, 3, 4, 8, and 15; Shuni and Akabane viruses, belonging to the Simbu serogroup of genus Orthobunyavirus in the Peribunyaviridae family; and EHDV. BTV serotype 8 caused a large outbreak that caused heavy losses of livestock in some sheep and cattle farms.

During September 2016–February 2017, we routinely tested 265 field samples by using specific EHDV real-time reverse transcription PCR (rRT-PCR), as described previously (6). The tested field samples included 10 spleen samples from wild and zoo ruminants taken from 4 mountain gazelles, 1 giraffe, 1 Arabian oryx, and 4 Nubian ibexes, as well as 13 spleen samples and 242 whole-blood EDTA samples from diseased cattle. We similarly tested 22 aborted cattle fetuses. We obtained the first EHDV-positive whole-blood sample from a diseased dairy cow on September 12, 2016, and the most recent one on February 26, 2017.

A total of 81 EHDV-positive field samples originated from northern Israel (the Golan Heights, Galilee, the Sharon Plain, and the Jordan Valley) and central Israel (the Coastal Plain). Positive samples included 1 spleen sample from a wild mountain gazelle that was found dead as a result of a head wound near the Sea of Galilee and 2 spleen samples and 78 whole-blood samples from infected cattle. However, the deaths of EHDV-positive cattle probably were not caused by EHDV. In 1 such case, in an adult dairy cow, Escherichia coli from all tested internal organs was isolated, and Babesia spp. were found during microscopic examination. In another case, in a 4-month-old calf, we identified BTV by using a BTV-specific rRT-PCR test (VetMAX BTV NS3 All Genotypes Kit, LSI; Thermo Fisher Scientific, https://www.thermofisher.com), which led to isolation of BTV serotype 8.

Among the EHDV rRT-PCR–positive samples, 18 were also rRT-PCR–positive for BTV and 1 was positive in pan-Simbu rRT-PCR (7), showing Akabane virus infection. All tested aborted cattle fetuses were EHDV-negative by rRT-PCR. We attempted virus isolation on all EHDV- and BTV-positive samples. We isolated 6 EHDV in embryonated chicken eggs, which consequently passed on BHK-21 cells, as previously described (6).

Figure

Thumbnail of Phylogenetic analysis based on full-length sequences of segment 2 in 2 EHDV serotype 1 isolates from Israel with global EHDVs and BTV-8 from GenBank. We analyzed 24 nucleotide sequences and inferred phylogenetic relationship by using the neighbor-joining method. Numbers below branches indicate bootstrap values. Recent isolates from Israel are marked with black circles. Viruses are identified by GenBank accession number, virus and serotype, 3-letter code of country (and additional in

Figure. Phylogenetic analysis based on full-length sequences of segment 2 in 2 EHDV serotype 1 isolates from Israel with global EHDVs and BTV-8 from GenBank. We analyzed 24 nucleotide sequences and inferred...

We sequenced 4 partial and 2 complete sequences of segment 2 (encoding viral protein 2) by using the standard Sanger method and submitted them to GenBank (accession nos. MG808405–MG808410). BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and phylogenetic analyses of the segment 2 sequences showed that the EHDV recently isolated in cattle in Israel belongs to serotype 1 and is closely related to the IbAr22619 strain from Nigeria, with which it shares 95.72%–95.76% identity (Figure).

Retrospective analysis of clinical signs in EHDV-1–infected cattle enabled us to conclude that in many farms EHDV infection was asymptomatic or subclinical; milk-yield reduction, fever, and recumbency were the only prominent clinical signs observed during the outbreak. However, animals with BTV and EHDV co-infections showed more severe clinical signs, including fever, abortion, lameness, subcutaneous emphysema, and death.

During recent years, several new arboviruses have been detected in Israel that were not identified previously. BTV serotype 3 was first identified in 2016 but probably was present in Israel since at least 2013 (9), EHDV serotype 6 was identified in 2015 (6), EHDV serotype 1 was found in 2016, and Shuni virus was detected in 2014 (10). These findings showed that new introductions of arthropodborne viral infections into the Middle East region had occurred. Molecular epidemiologic data indicate the viruses originated in Africa, as ours and other studies (5,6) have shown. Molecular diagnostics, vector-control strategies, and epidemiologic studies should be implemented in Israel to mitigate potential risk for future outbreaks.

Drs. Golender and Bumbarov are virologists in the Virology Department of the Kimron Veterinary Institute, Beit Dagan, Israel. Their primary research interests include the investigation of arboviral infections caused by viruses of the Reoviridae (Orbiviruses) family and the Peribunyaviridae (Orthobunyavirus, Simbu serogroup viruses) family, which affect ruminant populations, and developing diagnostic methods to detect these viruses.

Top

References

  1. Savini  G, Afonso  A, Mellor  P, Aradaib  I, Yadin  H, Sanaa  M, et al. Epizootic heamorragic disease. Res Vet Sci. 2011;91:117. DOIPubMedGoogle Scholar
  2. Weir  RP, Harmsen  MB, Hunt  NT, Blacksell  SD, Lunt  RA, Pritchard  LI, et al. EHDV-1, a new Australian serotype of epizootic haemorrhagic disease virus isolated from sentinel cattle in the Northern Territory. Vet Microbiol. 1997;58:13543. DOIPubMedGoogle Scholar
  3. Cêtre-Sossah  C, Roger  M, Sailleau  C, Rieau  L, Zientara  S, Bréard  E, et al. Epizootic haemorrhagic disease virus in Reunion Island: evidence for the circulation of a new serotype and associated risk factors. Vet Microbiol. 2014;170:38390. DOIPubMedGoogle Scholar
  4. Subramaniam  K, Lednicky  JA, Loeb  J, Sayler  KA, Wisely  SM, Waltzek  TB. Genomic sequences of epizootic hemorrhagic disease viruses isolated from Florida white-tailed deer. Genome Announc. 2017;5:e0117417. DOIPubMedGoogle Scholar
  5. Yadin  H, Brenner  J, Bumbrov  V, Oved  Z, Stram  Y, Klement  E, et al. Epizootic haemorrhagic disease virus type 7 infection in cattle in Israel. Vet Rec. 2008;162:536. DOIPubMedGoogle Scholar
  6. Golender  N, Khinich  Y, Gorohov  A, Abramovitz  I, Bumbarov  V. Epizootic hemorrhagic disease virus serotype 6 outbreak in Israeli cattle in 2015. J Vet Diagn Invest. 2017;29:8858. DOIPubMedGoogle Scholar
  7. Golender  N, Bumbarov  VY, Erster  O, Beer  M, Khinich  Y, Wernike  K. Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. J Virol Methods. 2018;261:805. DOIPubMedGoogle Scholar
  8. Kumar  S, Stecher  G, Tamura  K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:18704. DOIPubMedGoogle Scholar
  9. Golender  N, Eldar  A, Khinich  Y, Kenigswald  G, Bumbarov  V. Novel topotypes of bluetongue serotype 3 viruses in the Mediterranean Basin. In: Abstracts of the 11th EPIZONE Annual Meeting, Paris, France, 2017 Sep 19–21. Abstract C1; p. 26.
  10. Golender  N, Brenner  J, Valdman  M, Khinich  Y, Bumbarov  V, Panshin  A, et al. Malformations caused by Shuni virus in ruminants, Israel, 2014–2015. Emerg Infect Dis. 2015;21:22678. DOIPubMedGoogle Scholar

Top

Figure

Top

Cite This Article

DOI: 10.3201/eid2504.180149

Original Publication Date: February 28, 2019

1Both authors share first authorship.

Table of Contents – Volume 25, Number 4—April 2019

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Natalia Golender, Kimron Veterinary Institute, Beit Dagan 50250, POB 12, Israel

Send To

10000 character(s) remaining.

Top

Page created: March 17, 2019
Page updated: March 17, 2019
Page reviewed: March 17, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external