Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 9—September 2019
Research

Genetic Characterization and Enhanced Surveillance of Ceftriaxone-Resistant Neisseria gonorrhoeae Strain, Alberta, Canada, 2018

Byron M. BerengerComments to Author , Walter Demczuk, Jennifer Gratrix, Kanti Pabbaraju, Petra Smyczek, and Irene Martin
Author affiliations: University of Calgary, Calgary, Alberta, Canada (B. Berenger); Alberta Public Laboratories, Calgary (B. Berenger, K. Pabbaraju); Public Health Agency of Canada, Winnipeg, Manitoba, Canada (W. Demczuk, I. Martin); Alberta Health Services, Edmonton, Alberta (J. Gratrix, P. Smyczek)

Main Article

Figure

Core single-nucleotide variant (SNV) phylogenetic tree of ceftriaxone-resistant Neisseria gonorrhoeae identified from enhanced surveillance in Alberta, Canada (bold), and reference isolates. The maximum-likelihood phylogenetic tree is rooted on the reference genome of N. gonorrhoeae FA1090 (GenBank accession no. NC_002946.2). Scale bar represents the estimated evolutionary divergence between isolates on the basis of average genetic distance between strains (estimated number of substitutions in t

Figure. Core single-nucleotide variant (SNV) phylogenetic tree of ceftriaxone-resistant Neisseria gonorrhoeae identified from enhanced surveillance in Alberta, Canada (bold), and reference isolates. The maximum-likelihood phylogenetic tree is rooted on the reference genome of N. gonorrhoeae FA1090 (GenBank accession no. NC_002946.2). Scale bar represents the estimated evolutionary divergence between isolates on the basis of average genetic distance between strains (estimated number of substitutions in the sample/total number of high-quality SNVs). Strains F89 (WHO-Y), A8806 (WHO-Z), and H041 (WHO-X), A7536, 47707, A7846, FC460, and FC428 are previously reported ceftriaxone-resistant reference strains (4). MLST, multilocus sequence typing; NG-MAST, N. gonorrhoeae multiantigen sequence typing; NG-STAR, N. gonorrhoeae sequence typing for antimicrobial resistance.

Main Article

References
  1. Centers for Disease Control and Prevention. Sexually transmitted disease surveillance 2017. Atlanta: The Centers; 2018.
  2. Choudhri  Y, Miller  J, Sandhu  J, Leon  A, Aho  J. Gonorrhea in Canada, 2010-2015. Can Commun Dis Rep. 2018;44:3742. DOIPubMedGoogle Scholar
  3. European Centre for Disease Prevention and Control. Control. ECDC Annual epidemiological report for 2016. Stockholm: The Centre; 2018.
  4. Lahra  MM, Martin  I, Demczuk  W, Jennison  AV, Lee  K-I, Nakayama  S-I, et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis. 2018;24:148. DOIPubMedGoogle Scholar
  5. Papp  J, Schachter  J, Gaydos  C, Van Der Pol  B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae—2014. MMWR Recomm Rep. 2014;63(RR-02):119.
  6. Public Health Agency of Canada. Canadian guidelines on sexually transmitted infections. 2018 [cited 2019 Jul 3]. https://www.canada.ca/en/public-health/services/infectious-diseases/sexual-health-sexually-transmitted-infections/canadian-guidelines.html
  7. Martin  I, Sawatzky  P, Allen  V, Lefebvre  B, Hoang  L, Naidu  P, et al. Multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae in Canada, 2012-2016. Can Commun Dis Rep. 2019;45:4553. DOIPubMedGoogle Scholar
  8. Peterson  SW, Martin  I, Demczuk  W, Hoang  L, Wylie  J, Lefebvre  B, et al. A comparison of real-time polymerase chain reaction assays for the detection of antimicrobial resistance markers and sequence typing from clinical nucleic acid amplification test samples and matched Neisseria gonorrhoeae culture. Sex Transm Dis. 2018;45:925. DOIPubMedGoogle Scholar
  9. Palmer  HM, Young  H, Graham  C, Dave  J. Prediction of antibiotic resistance using Neisseria gonorrhoeae multi-antigen sequence typing. Sex Transm Infect. 2008;84:2804. DOIPubMedGoogle Scholar
  10. Whiley  DM, Mhango  L, Jennison  AV, Nimmo  G, Lahra  MM. Direct detection of penA gene associated with ceftriaxone-resistant Neisseria gonorrhoeae FC428 strain by using PCR. Emerg Infect Dis. 2018;24:15735. DOIPubMedGoogle Scholar
  11. Lefebvre  B, Martin  I, Demczuk  W, Deshaies  L, Michaud  S, Labbé  A-C, et al. Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerg Infect Dis. 2018;24:3813. DOIPubMedGoogle Scholar
  12. Smyczek  P, Berenger  BM, Chu  A. A case of an emerging international strain of multi-drug resistant Neisseria gonorrhoeae infection in a male with urethral discharge. Can Fam Physician. 2019. In press.
  13. Alberta Health Services. AHS map and zone overview. 2017 [cited 2019 Feb 19]. https://www.albertahealthservices.ca/assets/about/publications/ahs-ar-2017/zones.html
  14. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-eighth informational supplement. Wayne (PA): The Institute; 2018.
  15. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-ninth informational supplement. Wayne (PA): The Institute; 2019.
  16. Ehret  JM, Nims  LJ, Judson  FN. A clinical isolate of Neisseria gonorrhoeae with in vitro resistance to erythromycin and decreased susceptibility to azithromycin. Sex Transm Dis. 1996;23:2702. DOIPubMedGoogle Scholar
  17. Unemo  M, Fasth  O, Fredlund  H, Limnios  A, Tapsall  J. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J Antimicrob Chemother. 2009;63:114251. DOIPubMedGoogle Scholar
  18. Brown  LB, Krysiak  R, Kamanga  G, Mapanje  C, Kanyamula  H, Banda  B, et al. Neisseria gonorrhoeae antimicrobial susceptibility in Lilongwe, Malawi, 2007. Sex Transm Dis. 2010;37:16972. DOIPubMedGoogle Scholar
  19. Daly  CC, Hoffman  I, Hobbs  M, Maida  M, Zimba  D, Davis  R, et al. Development of an antimicrobial susceptibility surveillance system for Neisseria gonorrhoeae in Malawi: comparison of methods. J Clin Microbiol. 1997;35:29858.PubMedGoogle Scholar
  20. Magoč  T, Salzberg  SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:295763. DOIPubMedGoogle Scholar
  21. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  22. Petkau  A, Mabon  P, Sieffert  C, Knox  NC, Cabral  J, Iskander  M, et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb Genom. 2017;3:e000116. DOIPubMedGoogle Scholar
  23. Unemo  M, Golparian  D, Sánchez-Busó  L, Grad  Y, Jacobsson  S, Ohnishi  M, et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother. 2016;71:3096108. DOIPubMedGoogle Scholar
  24. Martin  IMC, Ison  CA, Aanensen  DM, Fenton  KA, Spratt  BG. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis. 2004;189:1497505. DOIPubMedGoogle Scholar
  25. Jolley  KA, Maiden  MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. DOIPubMedGoogle Scholar
  26. Demczuk  W, Sidhu  S, Unemo  M, Whiley  DM, Allen  VG, Dillon  JR, et al. Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J Clin Microbiol. 2017;55:145468. DOIPubMedGoogle Scholar
  27. Allen  VG, Farrell  DJ, Rebbapragada  A, Tan  J, Tijet  N, Perusini  SJ, et al. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob Agents Chemother. 2011;55:70312. DOIPubMedGoogle Scholar
  28. Trembizki  E, Buckley  C, Donovan  B, Chen  M, Guy  R, Kaldor  J, et al. Direct real-time PCR-based detection of Neisseria gonorrhoeae 23S rRNA mutations associated with azithromycin resistance. J Antimicrob Chemother. 2015;70:32449.PubMedGoogle Scholar
  29. Peterson  SW, Martin  I, Demczuk  W, Bharat  A, Hoang  L, Wylie  J, et al. Molecular assay for detection of genetic markers associated with decreased susceptibility to cephalosporins in Neisseria gonorrhoeae. Ledeboer NA, editor. J Clin Microbiol. 2015;53:2042–8.
  30. Canada  S. Census profile, 2016 census. Ottawa, ON, Canada. November 29, 2017 [cited 2019 Jul 12]. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm
  31. Gratrix  J, Kamruzzaman  A, Martin  I, Smyczek  P, Read  R, Bertholet  L, et al. Surveillance for antimicrobial resistance in gonorrhea: the Alberta model, 2012–2016. Antibiotics (Basel). 2018;7:63. DOIPubMedGoogle Scholar
  32. Unemo  M, Golparian  D, Limnios  A, Whiley  D, Ohnishi  M, Lahra  MM, et al. In vitro activity of ertapenem versus ceftriaxone against Neisseria gonorrhoeae isolates with highly diverse ceftriaxone MIC values and effects of ceftriaxone resistance determinants: ertapenem for treatment of gonorrhea? Antimicrob Agents Chemother. 2012;56:36039. DOIPubMedGoogle Scholar
  33. Nakayama  S, Shimuta  K, Furubayashi  K, Kawahata  T, Unemo  M, Ohnishi  M. New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother. 2016;60:433941. DOIPubMedGoogle Scholar
  34. Poncin  T, Fouere  S, Braille  A, Camelena  F, Agsous  M, Bebear  C, et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill. 2018;23:e1002344. DOIPubMedGoogle Scholar
  35. Chen  S-C, Yin  Y-P, Chen  X-S. Cephalosporin-resistant Neisseria gonorrhoeae clone, China. Emerg Infect Dis. 2018;24:8046. DOIPubMedGoogle Scholar
  36. World Health Organization. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. 2012 [cited 2019 Jul 3]. www.who.int/reproductivehealth/publications/rtis/9789241503501
  37. Eyre  DW, Sanderson  ND, Lord  E, Regisford-Reimmer  N, Chau  K, Barker  L, et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill. 2018;23:364. DOIPubMedGoogle Scholar

Main Article

Page created: August 21, 2019
Page updated: August 21, 2019
Page reviewed: August 21, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external