Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 1—January 2021

Performance of Nucleic Acid Amplification Tests for Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Prospectively Pooled Specimens

Hannah Wang, Catherine A. Hogan, Jacob A. Miller, Malaya K. Sahoo, ChunHong Huang, Kenji O. Mfuh, Mamdouh Sibai, James Zehnder, Brendan Hickey, Nasa Sinnott-Armstrong, and Benjamin A. PinskyComments to Author 
Author affiliations: Stanford University School of Medicine, Stanford, California, USA (H. Wang, C.A. Hogan, J.A. Miller, M.K. Sahoo, C. Huang, J. Zehnder, N. Sinnott-Armstrong, B.A. Pinsky); Stanford Health Care, Stanford (K.O. Mfuh, M. Sibai, B.A. Pinsky); Stanford University, Stanford (N. Sinnott-Armstrong)

Main Article

Table 1

Performance of nucleic acid amplification tests for detection of severe acute respiratory syndrome coronavirus 2 in prospectively pooled specimens, by testing platform*

Test name Gene target(s) Internal control Method Strategy Reference
LDT Envelope RNase P rRT-PCR Pools of 8†, pools of 4† (1,1416)
Panther Fusion ORF1ab Reagent spike-in rRT-PCR Pools of 8†, pools of 5†, pools of 3‡ (17)
Panther Aptima-M ORF1ab Reagent spike-in TMA Pools of 8 with manufacturer-set RLU cutoff† (18)
Panther Aptima-350 ORF1ab Reagent spike-in TMA Pools of 8 with RLU cutoff of >350†§ (18)

*Panther Aptima-M, Panther Aptima with manufacturer-set relative light unit cutoff value; Panther Aptima-350, Panther Aptima with relative light unit cutoff value >350 considered positive. Both products were from Hologic ( LDT, laboratory-developed test; ORF1ab, open reading frame 1ab; rRT-PCR, real-time reverse transcription PCR; RLU, relative light unit; TMA, transcription-mediated amplification.

†Pooled testing strategy was assessed empirically at Stanford Clinical Virology Laboratory, with individual samples evaluated by LDT.

‡Pooled testing strategy assessed by in silico sensitivity analysis, with individual samples evaluated by Panther Fusion.

§Panther Aptima RLU cutoff of 350 selected based on receiver operating characteristic curve (Appendix Figure 1).

Main Article

  1. Hogan  CA, Sahoo  MK, Pinsky  BA. Sample pooling as a strategy to detect community transmission of SARS-CoV-2. JAMA. 2020;323:19679. DOIPubMedGoogle Scholar
  2. Wacharapluesadee  S, Kaewpom  T, Ampoot  W, Ghai  S, Khamhang  W, Worachotsueptrakun  K, et al. Evaluating the efficiency of specimen pooling for PCR-based detection of COVID-19. J Med Virol. 2020;92:21939. DOIPubMedGoogle Scholar
  3. Yelin  I, Aharony  N, Shaer Tamar  E, Argoetti  A, Messer  E, Berenbaum  D, et al. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. Clin Infect Dis. 2020;May 2:ciaa531.
  4. Abdalhamid  B, Bilder  CR, McCutchen  EL, Hinrichs  SH, Koepsell  SA, Iwen  PC. Assessment of specimen pooling to conserve SARS CoV-2 testing resources. Am J Clin Pathol. 2020;153:7158. DOIPubMedGoogle Scholar
  5. Ben-Ami  R, Klochendler  A, Seidel  M, Sido  T, Gurel-Gurevich  O, Yassour  M, et al.; Hebrew University-Hadassah COVID-19 Diagnosis Team. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect. 2020;26:124853. DOIPubMedGoogle Scholar
  6. Eberhardt  JN, Breuckmann  NP, Eberhardt  CS. Multi-stage group testing improves efficiency of large-scale COVID-19 screening. J Clin Virol. 2020;128:104382. DOIPubMedGoogle Scholar
  7. Lohse  S, Pfuhl  T, Berkó-Göttel  B, Rissland  J, Geißler  T, Gärtner  B, et al. Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. Lancet Infect Dis. 2020;20:12312. DOIPubMedGoogle Scholar
  8. Pilcher  CD, Westreich  D, Hudgens  MG. Group testing for SARS-CoV-2 to enable rapid scale-up of testing and real-time surveillance of incidence. J Infect Dis. 2020;222:9039. DOIPubMedGoogle Scholar
  9. Eis-Hübinger  AM, Hönemann  M, Wenzel  JJ, Berger  A, Widera  M, Schmidt  B, et al. Ad hoc laboratory-based surveillance of SARS-CoV-2 by real-time RT-PCR using minipools of RNA prepared from routine respiratory samples. J Clin Virol. 2020;127:104381. DOIPubMedGoogle Scholar
  10. Perchetti  GA, Sullivan  K-W, Pepper  G, Huang  M-L, Breit  N, Mathias  P, et al. Pooling of SARS-CoV-2 samples to increase molecular testing throughput. J Clin Virol. 2020;131:104570. DOIPubMedGoogle Scholar
  11. Busch  MP, Kleinman  SH, Jackson  B, Stramer  SL, Hewlett  I, Preston  S. Committee report. Nucleic acid amplification testing of blood donors for transfusion-transmitted infectious diseases: Report of the Interorganizational Task Force on Nucleic Acid Amplification Testing of Blood Donors. Transfusion. 2000;40:14359. DOIPubMedGoogle Scholar
  12. Custer  B, Tomasulo  PA, Murphy  EL, Caglioti  S, Harpool  D, McEvoy  P, et al. Triggers for switching from minipool testing by nucleic acid technology to individual-donation nucleic acid testing for West Nile virus: analysis of 2003 data to inform 2004 decision making. Transfusion. 2004;44:154754. DOIPubMedGoogle Scholar
  13. Food and Drug Administration. Molecular diagnostic template for laboratories, July 28, 2020 [cited 2020 Sep 18].
  14. Food and Drug Administration. EUA summary: SARS-CoV-2 RT-PCR assay (Stanford Health Care Clinical Virology Laboratory). April 8, 2020 [cited 2020 Jul 11].
  15. Bulterys  PL, Garamani  N, Stevens  B, Sahoo  MK, Huang  C, Hogan  CA, et al. Comparison of a laboratory-developed test targeting the envelope gene with three nucleic acid amplification tests for detection of SARS-CoV-2. J Clin Virol. 2020;129:104427. DOIPubMedGoogle Scholar
  16. Corman  VM, Landt  O, Kaiser  M, Molenkamp  R, Meijer  A, Chu  DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25:18. DOIPubMedGoogle Scholar
  17. Food and Drug Administration. EUA summary: SARS-CoV-2 assay (Panther Fusion System), April 24, 2020 [cited 2020 Jul 11].
  18. Food and Drug Administration. EUA Summary: Aptima SARS-CoV-2, May 14, 2020 [cited 2020 Jul 11].
  19. Robin  X, Turck  N, Hainard  A, Tiberti  N, Lisacek  F, Sanchez  JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. DOIPubMedGoogle Scholar
  20. Altman  D, Machin  D, Bryant  T, Gardner  M, editors. Statistics with confidence. 2nd ed. London: British Medical Journal Books; 2000.
  21. La Scola  B, Le Bideau  M, Andreani  J, Hoang  VT, Grimaldier  C, Colson  P, et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur J Clin Microbiol Infect Dis. 2020;39:105961. DOIPubMedGoogle Scholar
  22. Aragón-Caqueo  D, Fernández-Salinas  J, Laroze  D. Optimization of group size in pool testing strategy for SARS-CoV-2: A simple mathematical model. J Med Virol. 2020;92:198894. DOIPubMedGoogle Scholar
  23. Cherif  A, Grobe  N, Wang  X, Kotanko  P. Simulation of pool testing to identify patients with coronavirus disease 2019 under conditions of limited test availability. JAMA Netw Open. 2020;3:e2013075. DOIPubMedGoogle Scholar
  24. Pan  Y, Zhang  D, Yang  P, Poon  LLM, Wang  Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020;20:4112. DOIPubMedGoogle Scholar
  25. Xu  T, Chen  C, Zhu  Z, Cui  M, Chen  C, Dai  H, et al. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis. 2020;94:6871. DOIPubMedGoogle Scholar
  26. To  KK, Tsang  OT, Leung  WS, Tam  AR, Wu  TC, Lung  DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20:56574. DOIPubMedGoogle Scholar
  27. Wölfel  R, Corman  VM, Guggemos  W, Seilmaier  M, Zange  S, Müller  MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:4659. DOIPubMedGoogle Scholar

Main Article

Page created: September 29, 2020
Page updated: December 21, 2020
Page reviewed: December 21, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.