Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 1—January 2023
Research

Widespread Exposure to Mosquitoborne California Serogroup Viruses in Caribou, Arctic Fox, Red Fox, and Polar Bears, Canada

Kayla J. BuhlerComments to Author , Antonia Dibernardo, Nicholas W. Pilfold, N. Jane Harms, Heather Fenton, Suzanne Carriere, Allicia Kelly, Helen Schwantje, Xavier Fernandez Aguilar, Lisa-Marie Leclerc, Geraldine G. Gouin, Nicholas J. Lunn, Evan S. Richardson, David McGeachy, Émilie Bouchard, Adrián Hernández Ortiz, Gustaf Samelius, L. Robbin Lindsay, Michael A. Drebot, Patricia Gaffney, Patrick Leighton, Ray Alisauskas, and Emily Jenkins
Author affiliations: University of Saskatchewan, Saskatoon, Saskatchewan, Canada (K.J. Buhler, É. Bouchard, A. Hernández Ortiz, R. Alisauskas, E. Jenkins); National Microbiology Laboratory Branch, Winnipeg, Manitoba, Canada (A. Dibernardo, L.R. Lindsay, M.A. Drebot); San Diego Zoo Wildlife Alliance, Escondido, California, USA (N.W. Pilfold, P. Gaffney); Government of Yukon, Whitehorse, Yukon, Canada (N.J. Harms); Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis (H. Fenton); Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada (H. Fenton, S. Carriere, A. Kelly); Government of British Columbia, Nanaimo, British Columbia, Canada (H. Schwantje); University of Calgary, Calgary, Alberta, Canada (X. Fernandez Aguilar); Government of Nunavut, Kugluktuk, Nunavut, Canada (L.-M. Leclerc); Makivik Corporation, Kuujjuaq, Québec, Canada (G.G. Gouin); Environment and Climate Change Canada, Edmonton, Alberta, Canada (N.J. Lunn, D. McGeachy); Environment and Climate Change Canada, Winnipeg (E.S. Richardson); Snow Leopard Trust, Seattle, Washington, USA (G. Sameilus); Université de Montréal, Saint-Hyacinthe, Québec (É. Bouchard, P. Leighton)

Main Article

Table 1

Covariates used to model the likelihood of California serogroup virus seropositivity in adult polar bears of western Hudson Bay, Canada, 1986–2017, in study of widespread exposure to mosquitoborne California serogroup viruses in caribou, Arctic fox, red fox, and polar bears*

Variables Range Description (reference)
Biologic
Age, y 5–31 Age of polar bear according to tooth histology (17)
Sex 1/0# Field determination with females as reference category
Poor condition† 1/0# Polar bears rated 1 or 2 on 5-point body condition index (22)
Good condition† 1/0# Polar bears rated 4 or 5 on 5-point body condition index (22)
Weight, kg‡ 136–602 Calculated weight (23) matched to temporal equations for WHB
Conflict§
1/0#
Polar bears captured by Manitoba Conservation in Churchill, MB (24) before sample collection
Climatic¶
Ice free, d 110–152 No. days sea ice concentration was <15% as determined by SSM/I (25), within 95% MCP estimate of polar bear home range (12)
Summer temperature, °C 7.8–10.8 Mean air temperature, June–September, measured at Churchill airport, MB (26)
Summer precipitation, mm 169.0–310.6 Total precipitation, June–September, measured at Churchill airport, MB (26)
Winter temperature, °C –30.0 to –24.9 Mean minimum air temperature, December–March, measured at Churchill airport, MB (26)
Annual temperature, °C –7.4 to –5.2 Mean annual air temperature measured at Churchill airport, MB (26)
Annual precipitation, mm 344.7–507.8 Total annual precipitation measured at Churchill Airport, MB (26)

*This table was published previously (18). MB, Manitoba; MCP, minimum complex polygon; SSM/I, special sensor microwave/imager; WHB, western Hudson Bay. †The 5-point body condition index was dummy-coded with an average score of 3 forming the reference category. ‡Mean weight centered within sex before modeling. §Bears with a history of capture as part of the Polar Bear Alert Program prior to sampling. ¶All climate variables measured the year before serum sample collection. #Multiple linear regression was used to model seropositivity with fixed effect variables 1/0 (positive/negative) as dependent variables.

Main Article

References
  1. Hoberg  EP, Brooks  DR. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc Lond B Biol Sci. 2015;370:20130553. DOIPubMedGoogle Scholar
  2. Zhang  X, Flato  G, Kirchmeier-Young  M, Vincent  L, Wan  H, Wang  X, et al. Changes in temperature and precipitation across Canada. In: Bush E, Lemmen DS, editors. Canada’s changing climate report. Ottawa (ON, Canada): Government of Canada; 2019. p. 112–93.
  3. Bintanja  R. The impact of Arctic warming on increased rainfall. Sci Rep. 2018;8:16001. DOIPubMedGoogle Scholar
  4. Grace  J, Berninger  F, Nagy  L. Impacts of climate change on the tree line. Ann Bot. 2002;90:53744. DOIPubMedGoogle Scholar
  5. Drebot  MA. Emerging mosquito-borne bunyaviruses in Canada. Can Commun Dis Rep. 2015;41:11723. DOIPubMedGoogle Scholar
  6. Hughes  HR, Lanciotti  RS, Blair  CD, Lambert  AJ. Full genomic characterization of California serogroup viruses, genus Orthobunyavirus, family Peribunyaviridae including phylogenetic relationships. Virology. 2017;512:20110. DOIPubMedGoogle Scholar
  7. Meier-Stephenson  V, Langley  JM, Drebot  M, Artsob  H. Encephalitis in the summer: a case of snowshoe hare (California serogroup) virus infection in Nova Scotia. Can Commun Dis Rep. 2007;33:236.PubMedGoogle Scholar
  8. LeDuc  JW. Epidemiology and ecology of the California serogroup viruses. Am J Trop Med Hyg. 1987;37(Suppl):60S8S. DOIPubMedGoogle Scholar
  9. Vosoughi  R, Walkty  A, Drebot  MA, Kadkhoda  K. Jamestown Canyon virus meningoencephalitis mimicking migraine with aura in a resident of Manitoba. CMAJ. 2018;190:E2624. DOIPubMedGoogle Scholar
  10. Miernyk  KM, Bruden  D, Parkinson  AJ, Hurlburt  D, Klejka  J, Berner  J, et al. Human seroprevalence to 11 zoonotic pathogens in the U.S. Arctic, Alaska. Vector Borne Zoonotic Dis. 2019;19:56375. DOIPubMedGoogle Scholar
  11. Villeneuve  CA, Buhler  KJ, Iranpour  M, Avard  E, Dibernardo  A, Fenton  H, et al. New records of California serogroup viruses in Aedes mosquitoes and first detection in simulioidae flies from Northern Canada and Alaska. Polar Biol. 2021;44:19115. DOIGoogle Scholar
  12. McCall  AG, Derocher  AE, Lunn  NJ. Home range distribution of polar bears in western Hudson Bay. Polar Biol. 2015;38:34355. DOIGoogle Scholar
  13. Buhler  KJ, Maggi  RG, Gailius  J, Galloway  TD, Chilton  NB, Alisauskas  RT, et al. Hopping species and borders: detection of Bartonella spp. in avian nest fleas and arctic foxes from Nunavut, Canada. Parasit Vectors. 2020;13:469. DOIPubMedGoogle Scholar
  14. Chevallier  C, Gauthier  G, Berteaux  D. Age estimation of live arctic foxes Vulpes lagopus based on teeth condition. Wildl Biol. 2017;2017:16. DOIGoogle Scholar
  15. Lunn  NJ, Servanty  S, Regehr  EV, Converse  SJ, Richardson  E, Stirling  I. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecol Appl. 2016;26:130220. DOIPubMedGoogle Scholar
  16. Stirling  I, Spencer  C, Andriashek  D. Immobilization of polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. J Wildl Dis. 1989;25:15968. DOIPubMedGoogle Scholar
  17. Calvert  W, Ramsay  MA. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus. 1998;10:44953.
  18. Pilfold  NW, Richardson  ES, Ellis  J, Jenkins  E, Scandrett  WB, Hernández-Ortiz  A, et al. Long-term increases in pathogen seroprevalence in polar bears (Ursus maritimus) influenced by climate change. Glob Change Biol. 2021;27:448197. DOIPubMedGoogle Scholar
  19. Rocheleau  JP, Michel  P, Lindsay  LR, Drebot  M, Dibernardo  A, Ogden  NH, et al. Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs. Epidemiol Infect. 2017;145:29408. DOIPubMedGoogle Scholar
  20. Beaty  BJ, Calisher  CH, Shope  RS. Arboviruses. In: Schmidt NJ, Emmons RW, editors. Diagnostic procedures for viral, rickettsial and chlamydial Infections. Washington: American Public Health Association; 1989. p. 797–856.
  21. Sergeant  ESG. Epitools epidemiological calculators. Ausvet, 2019 [cited 2021 Aug 15]. https://epitools.ausvet.com.au
  22. Stirling  I, Thiemann  GW, Richardson  E. Quantitative support for a subjective fatness index for immobilized polar bears. J Wildl Manage. 2008;72:56874. DOIGoogle Scholar
  23. Thiemann  GW, Lunn  NJ, Richardson  ES, Andriashek  DS. Temporal change in the morphometry–body mass relationship of polar bears. J Wildl Manage. 2011;75:5807. DOIGoogle Scholar
  24. Towns  L, Derocher  AE, Stirling  I, Lunn  NJ, Hedman  D. Spatial and temporal patterns of problem polar bears in Churchill, Manitoba. Polar Biol. 2009;32:152937. DOIGoogle Scholar
  25. Cavalieri  DJ, Parkinson  CL, Gloersen  P, Zwally  HJ. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. Boulder (CO): NASA National Snow and Ice Data Center Distributed Active Archive Center; 1996. DOIGoogle Scholar
  26. Government of Canada. Historical Data. National Climate Data and Information Archive [cited 2020 Feb 23]. https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
  27. Watts  DM, Tammariello  RF, Dalrymple  JM, Eldridge  BF, Russell  PK, Top  FH Jr. Experimental infection of vertebrates of the Pocomoke Cypress Swamp, Maryland with Keystone and Jamestown Canyon viruses. Am J Trop Med Hyg. 1979;28:34450. DOIPubMedGoogle Scholar
  28. Corbet  PS, Downe  AER. Natural hosts of mosquitoes in northern Ellesmere Island. Arctic. 1966;19:15361. DOIGoogle Scholar
  29. Castro de la Guardia  L, Myers  PG, Derocher  AE, Lunn  NJ, Terwisscha van Scheltinga  AD. Sea ice cycle in western Hudson Bay, Canada, from a polar bear perspective. Mar Ecol Prog Ser. 2017;564:22533. DOIGoogle Scholar
  30. Audet  AM, Robbins  CB, Larivière  S. Alopex lagopus. Mamm Species. 2002;713:110. DOIGoogle Scholar
  31. Culler  LE, Ayres  MP, Virginia  RA. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proc Biol Sci. 2015;282:20151549. DOIPubMedGoogle Scholar
  32. Corbet  PS, Danks  HV. Egg-laying habits of mosquitoes in the high Arctic. Mosq News. 1975;35:814.
  33. Vincent  LA, Zhang  X, Brown  RD, Feng  Y, Mekis  E, Milewska  EJ, et al. Observed trends in Canada’s climate and influence of low-frequency variability modes. J Clim. 2015;28:454560. DOIGoogle Scholar
  34. Ogden  NH, Lindsay  LR, Ludwig  A, Morse  AP, Zheng  H, Zhu  H. Weather-based forecasting of mosquito-borne disease outbreaks in Canada. Can Commun Dis Rep. 2019;45:12732. DOIPubMedGoogle Scholar
  35. Seip  DR, Cichowski  DB. Population ecology of caribou in British Columbia. Rangifer. 1996;16:7380. DOIGoogle Scholar
  36. Bergerud  AT. Caribou. In: Davis DE, editor. CRC handbook of census methods for terrestrial vertebrates, 1st ed. Boca Raton (LA): CRC Press; 1982. p. 268–270
  37. Downes  CM, Theberge  JB, Smith  SM. The influence of insects on the distribution, microhabitat choice, and behaviour of the Burwash caribou herd. Can J Zool. 1986;64:6229. DOIGoogle Scholar
  38. Stirling  I, Jonkel  C, Smith  P, Robertson  R, Cross  D. The ecology of the polar bear (Ursus maritimus) along the western coast of Hudson Bay. Canadian Wildlife Service, occasional paper no. 33, 1977 [cited 2021 Oct 20]. https://publications.gc.ca/collections/collection_2018/eccc/CW69-1-33-eng.pdf
  39. Derocher  AE, Stirling  I. Distribution of polar bears (Ursus maritimus) during the ice-free period in western Hudson Bay. Can J Zool. 1990;68:1395403. DOIGoogle Scholar
  40. Peacock  E, Derocher  AE, Lunn  NJ, Obbard  ME. Polar bear ecology and management in Hudson Bay in the face of climate change. In: Ferguson SH, Loseto LL, Mallory ML, editors. A little less Arctic. Dordrecht (the Netherlands): Springer-Verlag; 2010. p. 93–116.
  41. Ritchie  JC. The vegetation of northern Manitoba. V. Establishing the major zonation. Arctic. 1960;13:21029. DOIGoogle Scholar
  42. Brook  RK. Structure and dynamics of the vegetation in Wapusk National Park and the Cape Churchill Wildlife Management Area of Manitoba, community and landscape scales [master’s thesis]. Winnipeg (MN, Canada): University of Manitoba; 2001.
  43. Clark  DA, Stirling  I, Calvert  W. Distribution, characteristics, and use of earth dens and related excavations by polar bears on the western Hudson Bay lowlands. Arctic. 1997;50:15866. DOIGoogle Scholar
  44. Richardson  E, Stirling  I, Hik  DS. Polar bear (Ursus maritimus) maternity denning habitat in western Hudson Bay: a bottom-up approach to resource selection functions. Can J Zool. 2005;83:86070. DOIGoogle Scholar
  45. Feldman  KA. Tularemia. J Am Vet Med Assoc. 2003;222:72530. DOIPubMedGoogle Scholar
  46. Hollis-Etter  KM, Montgomery  RA, Etter  DR, Anchor  CL, Chelsvig  JE, Warner  RE, et al. Environmental conditions for Jamestown Canyon virus correlated with population-level resource selection by white-tailed deer in a suburban landscape. PLoS One. 2019;14:e0223582. DOIPubMedGoogle Scholar
  47. Patriquin  G, Drebot  M, Cole  T, Lindsay  R, Schleihauf  E, Johnston  BL, et al. High seroprevalence of Jamestown Canyon virus among deer and humans, Nova Scotia, Canada. Emerg Infect Dis. 2018;24:11821. DOIPubMedGoogle Scholar
  48. Rocheleau  JP, Michel  P, Lindsay  LR, Drebot  M, Dibernardo  A, Ogden  NH, et al. Risk factors associated with seropositivity to California serogroup viruses in humans and pet dogs, Quebec, Canada. Epidemiol Infect. 2018;146:116776. DOIPubMedGoogle Scholar
  49. Dudley  JP, Hoberg  EP, Jenkins  EJ, Parkinson  AJ. Climate Change in the North American Arctic: A One Health Perspective. EcoHealth. 2015;12:71325. DOIPubMedGoogle Scholar
  50. Fuglei  E, Ims  RA. Global warming and effects on the Arctic fox. Sci Prog. 2008;91:17591. DOIPubMedGoogle Scholar

Main Article

Page created: November 18, 2022
Page updated: December 21, 2022
Page reviewed: December 21, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external